Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (152)
  • Open Access

    PROCEEDINGS

    Identification of the Anisotropic Thermal-Mechanical Properties of Sheet Metals Using the Virtual Fields Method

    Jiawei Fu1,2,*, Yahui Cai1, Bowen Zhang1, Zengxiang Qi1, Lehua Qi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013007

    Abstract The accurate characterization of the anisotropic thermal-mechanical constitutive properties of structural sheet metals at elevated temperatures and under nonuniform stress/strain states is crucial for the precise hot plastic forming and structural behavior evaluation of an engineering sheet part. Traditional thermal-mechanical testing methods rely on the assumption of states homogeneity, leading to a large number of tests required for the characterization of material anisotropy and nonlinearity at various high temperatures. In this work, a highly efficient identification method is proposed that allows the simultaneous characterization of the anisotropic yielding, strain hardening and elasto-plasticity thermal softening material More >

  • Open Access

    ARTICLE

    A Discrete Multi-Objective Squirrel Search Algorithm for Energy-Efficient Distributed Heterogeneous Permutation Flowshop with Variable Processing Speed

    Liang Zeng1,2,3, Ziyang Ding1, Junyang Shi1, Shanshan Wang1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1757-1787, 2024, DOI:10.32604/cmc.2024.055574 - 15 October 2024

    Abstract In the manufacturing industry, reasonable scheduling can greatly improve production efficiency, while excessive resource consumption highlights the growing significance of energy conservation in production. This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed (DHPFSP-VPS), considering both the minimum makespan and total energy consumption (TEC) as objectives. A discrete multi-objective squirrel search algorithm (DMSSA) is proposed to solve the DHPFSP-VPS. DMSSA makes four improvements based on the squirrel search algorithm. Firstly, in terms of the population initialization strategy, four hybrid initialization methods targeting different objectives are proposed to enhance… More >

  • Open Access

    PROCEEDINGS

    Simulation of Underwater Explosion Shock Wave Propagation in Heterogeneous Fluid Field

    Yuntao Lei1, Wenbin Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011365

    Abstract The underwater explosion could cause the serious damage to the naval ships. Investigating the underwater explosion problem is crucial for the development of marine military power. During the recent years, the underwater explosion dynamics in the homogeneous fluid field has been investigated by lots of researchers. However, there often exist sound speed thermoclines in the real ocean environment, which leads to a more complex fluid environment than the homogeneous fluid. The corresponding numerical calculations become more complicated. In order to fully understand the underwater explosion dynamics in the real ocean environment, we perform the numerical… More >

  • Open Access

    PROCEEDINGS

    An Energy-Based Local-Nonlocal Coupling Scheme for Heterogeneous Material Brittle Fractures: Analysis and Simulations

    Shaoqi Zheng1, Zihao Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012200

    Abstract This study proposes a novel method for predicting the microcrack propagation in composites based on coupling the local and non-local micromechanics. The special feature of this method is that it can take full advantages of both the continuum micromechanics as a local model and peridynamic micromechanics as a non-local model to achieve composite fracture simulation with a higher level of accuracy and efficiency. Based on the energy equivalence, we first establish the equivalent continuum micromechanics model with equivalent stiffness operators through peridynamic micromechanics model. These two models are then coupled into a closed equation system, More >

  • Open Access

    ARTICLE

    Numerical Simulation and Parallel Computing of Acoustic Wave Equation in Isotropic-Heterogeneous Media

    Arshyn Altybay1,2,*, Niyaz Tokmagambetov1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1867-1881, 2024, DOI:10.32604/cmes.2024.054892 - 27 September 2024

    Abstract In this paper, we consider the numerical implementation of the 2D wave equation in isotropic-heterogeneous media. The stability analysis of the scheme using the von Neumann stability method has been studied. We conducted a study on modeling the propagation of acoustic waves in a heterogeneous medium and performed numerical simulations in various heterogeneous media at different time steps. Developed parallel code using Compute Unified Device Architecture (CUDA) technology and tested on domains of various sizes. Performance analysis showed that our parallel approach showed significant speedup compared to sequential code on the Central Processing Unit (CPU). More >

  • Open Access

    ARTICLE

    Heterogeneous Task Allocation Model and Algorithm for Intelligent Connected Vehicles

    Neng Wan1,2, Guangping Zeng1,*, Xianwei Zhou1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4281-4302, 2024, DOI:10.32604/cmc.2024.054794 - 12 September 2024

    Abstract With the development of vehicles towards intelligence and connectivity, vehicular data is diversifying and growing dramatically. A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle (ICV) applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points (NCPs). Considering the amount of task data and the idle resources of NCPs, a computing resource scheduling model for NCPs is established. Taking the heterogeneous task execution delay threshold as a constraint, the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs. The… More >

  • Open Access

    ARTICLE

    FPGA Accelerators for Computing Interatomic Potential-Based Molecular Dynamics Simulation for Gold Nanoparticles: Exploring Different Communication Protocols

    Ankitkumar Patel1, Srivathsan Vasudevan1,*, Satya Bulusu2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3803-3818, 2024, DOI:10.32604/cmc.2024.052851 - 12 September 2024

    Abstract Molecular Dynamics (MD) simulation for computing Interatomic Potential (IAP) is a very important High-Performance Computing (HPC) application. MD simulation on particles of experimental relevance takes huge computation time, despite using an expensive high-end server. Heterogeneous computing, a combination of the Field Programmable Gate Array (FPGA) and a computer, is proposed as a solution to compute MD simulation efficiently. In such heterogeneous computation, communication between FPGA and Computer is necessary. One such MD simulation, explained in the paper, is the (Artificial Neural Network) ANN-based IAP computation of gold (Au147 & Au309) nanoparticles. MD simulation calculates the forces… More >

  • Open Access

    ARTICLE

    Resilience Augmentation in Unmanned Weapon Systems via Multi-Layer Attention Graph Convolutional Neural Networks

    Kexin Wang*, Yingdong Gou, Dingrui Xue*, Jiancheng Liu, Wanlong Qi, Gang Hou, Bo Li

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2941-2962, 2024, DOI:10.32604/cmc.2024.052893 - 15 August 2024

    Abstract The collective Unmanned Weapon System-of-Systems (UWSOS) network represents a fundamental element in modern warfare, characterized by a diverse array of unmanned combat platforms interconnected through heterogeneous network architectures. Despite its strategic importance, the UWSOS network is highly susceptible to hostile infiltrations, which significantly impede its battlefield recovery capabilities. Existing methods to enhance network resilience predominantly focus on basic graph relationships, neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS. To address these limitations, we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network (E-MAGCN), designed to augment the adaptability of More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism

    Jing-Doo Wang1, Chayadi Oktomy Noto Susanto1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1711-1728, 2024, DOI:10.32604/cmes.2024.048955 - 20 May 2024

    Abstract A significant obstacle in intelligent transportation systems (ITS) is the capacity to predict traffic flow. Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately. However, accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors. This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory (Conv-BiLSTM) with attention mechanisms. Prior studies neglected to include data pertaining to factors such as holidays, weather conditions, and More >

  • Open Access

    ARTICLE

    Development of a Three-Dimensional Multiscale Octree SBFEM for Viscoelastic Problems of Heterogeneous Materials

    Xu Xu1, Xiaoteng Wang1, Haitian Yang1, Zhenjun Yang2, Yiqian He1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1831-1861, 2024, DOI:10.32604/cmes.2024.048199 - 20 May 2024

    Abstract The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms (DOFs). A basic framework of the Multiscale Scaled Boundary Finite Element Method (MsSBFEM) was presented in our previous works, but those works only addressed two-dimensional problems. In order to solve more realistic problems, a three-dimensional MsSBFEM is further developed in this article. In the proposed method, the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales, the three-dimensional image-based analysis can be conveniently… More >

Displaying 1-10 on page 1 of 152. Per Page