Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (109)
  • Open Access

    ARTICLE

    Analysis of the Influence of Oxygen Enrichment in the Blast on Temperature Field and NO Generation near the Burner in Reheating Furnace

    Xiaojun Li, Fuyong Su*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 719-732, 2024, DOI:10.32604/fhmt.2024.051950

    Abstract In order to study the effect of oxygen-enriched combustion technology on the temperature field and NO emission in the continuous heating furnace, this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company. This study utilizes numerical simulation method, establishes the mathematical models of flow, combustion and NO generation combustion process in the furnace and analyzes the heat transfer process and NO generation in the furnace under different air oxygen content and different wind ratio. The research results show that with the increase of oxygen content in the air, More > Graphic Abstract

    Analysis of the Influence of Oxygen Enrichment in the Blast on Temperature Field and NO Generation near the Burner in Reheating Furnace

  • Open Access

    ARTICLE

    Optimization Study of Active-Passive Heating System Parameters in Village Houses in the Southern Xinjiang Province

    Xiaodan Wu1, Jie Li1,*, Yongbin Cai2, Sihui Huang1

    Energy Engineering, Vol.121, No.7, pp. 1963-1990, 2024, DOI:10.32604/ee.2024.048477

    Abstract Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang, a combined active-passive heating system was proposed, and the simulation software was used to optimize the parameters of the system, according to the parameters obtained from the optimization, a test platform was built and winter heating test was carried out. The simulation results showed that the thickness of the air layer of 75 mm, the total area of the vent holes of 0.24 m, and the thickness of the insulation layer of 120… More >

  • Open Access

    ARTICLE

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

    Yosr Laatiri, Habib Sammouda, Fadhel Aloulou*

    Journal of Renewable Materials, Vol.12, No.4, pp. 771-798, 2024, DOI:10.32604/jrm.2024.047022

    Abstract This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings. Our contribution is the creation of insulating composite panels made of bio-based phase change materials (bio-PCM is all from coconut oil), cement and renewable materials (treated wood fiber and organic clay). The inclusion of wood fibers improved the thermal properties; a simple 2% increase of wood fiber decreased the heat conductivity by approximately 23.42%. The issues of bio-PCM leakage in the cement mortar and a roughly 56.5% reduction in thermal… More > Graphic Abstract

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

  • Open Access

    ARTICLE

    Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters

    Guanglu Xie1, Zhimin Xue1, Bo Xiong1, Yaowen Huang1, Chaoming Chen1, Qing Liao1, Cheng Yang2,*, Xiaoqian Ma2

    Energy Engineering, Vol.121, No.6, pp. 1495-1519, 2024, DOI:10.32604/ee.2024.047832

    Abstract The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems. This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units, the hydraulic and thermodynamic characteristics of the heating network, and the energy loads. Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case, the interaction effect among the source-side prime movers, the heating networks, and the terminal demand thermal parameters were investigated based on the designed values, the… More >

  • Open Access

    ARTICLE

    Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform

    Yingkai Dong1,2, Chaohe Chen2,*, Guangyan Jia2, Lidai Wang3, Jian Bai1

    Energy Engineering, Vol.121, No.5, pp. 1173-1193, 2024, DOI:10.32604/ee.2024.046432

    Abstract This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system. Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes, we analyze the factors that affect the insulation effect of the drilling rig system. These factors include the thermal conductivity of the insulation material, the thickness of the insulation layer, ambient temperature, and wind speed. We optimize the thermal insulation material of the polar drilling rig system using a steady-state method… More >

  • Open Access

    ARTICLE

    AERATION OF COMPOST HEATING SYSTEM USING MAGNETIC FIELD

    Harumi Toriyama*, Yutaka Asako

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-6, 2010, DOI:10.5098/hmt.v1.1.3005

    Abstract Effects of a magnetic field on aeration through porous medium compost have been investigated numerically. Some composts yield heat over 60 degrees Celsius in fermentation process. That exothermic reaction produces a considerable amount of heat, which could be a potential heating source. Fermentation reaction requires aeration, sufficient supply of paramagnetic oxygen gas and exhaust of metabolized diamagnetic carbon dioxide gas. Continuous and forced air supply is more efficient rather than conventional manual turns or stirrings as aeration means. In magnetoaero-dynamics, the magnetizing force acting on a paramagnetic oxygen gas is applied for the enhancement of More >

  • Open Access

    ARTICLE

    BIO-HEAT TRANSFER SIMULATION OF SQUARE AND CIRCULAR ARRAY OF RETINAL LASER IRRADIATION

    Arunn Narasimhan*, Kaushal Kumar Jha

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-8, 2011, DOI:10.5098/hmt.v2.3.3005

    Abstract Pan Retinal photocoagulation (PRP), a retinal laser surgical process, is simulated using a three-dimensional bio-heat transfer numerical model. Spots of two different type of array, square array of 3 × 3 spots and a circular array of six spots surrounding a central spot, are sequentially irradiated. Pennes bio-heat transfer model is used as the governing equation. Finite volume method is applied to find the temperature distribution due to laser irradiation inside the human eye. Each spot is heated for 100 ms and subsequently cooled for 100 ms with an initial laser power of 0.2 W. More >

  • Open Access

    ARTICLE

    HEAT TRANSFER IN A MICROTUBE OR MICROCHANNEL WITH PROTRUSIONS

    Muhammad M. Rahman*, Phaninder Injeti

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-9, 2011, DOI:10.5098/hmt.v2.1.3003

    Abstract This paper presents the effects of protrusions on heat transfer in a microtube and in a two-dimensional microchannel of finite wall thickness. The effects of protrusion shape, size, and number were investigated. Calculations were done for incompressible flow of a Newtonian fluid with developing momentum and thermal boundary layers under uniform and discrete heating conditions. It was found that the local Nusselt number near a protrusion changes significantly with the variations of Reynolds number, height, width, and distance between protrusions, and the distribution of discrete heat sources. The results presented in the paper demonstrate that More >

  • Open Access

    ARTICLE

    MODELLING OF COMBINED HEAT AND MASS TRANSFER OF WATER DROPLETS IN THERMAL TECHNOLOGY EQUIPMENT

    Gintautas Miliauskas*, Stasys Sinkunas, Kristina Norvaisiene, Kestutis Sinkunas

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-6, 2012, DOI:10.5098/hmt.v3.2.3006

    Abstract Water droplet evaporation process is numerically modelled under various heat and mass transfer conditions. Regularities of heat transfer process interaction are examined. Modelling in this work was performed using the combined analytical – numerical method to investigate heat and mass transfer in the two-phase droplets-gas flow system. The influence of forced liquid circulation on the thermal state of droplets is taken into account by the effective coefficient of thermal conductivity. Calculating the rate of droplet evaporation and the intensity of convective heating, the influence of the Stefan’s hydrodynamic flow is taken into account. Balancing energy More >

  • Open Access

    ARTICLE

    RADIO FREQUENCY HEATING OF IMPLANTED TISSUE ENGINEERED SCAFFOLDS: SIMULATION AND EXPERIMENTAL STUDIES

    Mohammad Izadifara,b,*, Xiongbiao Chena,b

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-7, 2012, DOI:10.5098/hmt.v3.4.3004

    Abstract Heat can be potentially used for accelerating biodegradation of implanted tissue engineered scaffolds. Cyclic and continuous radio frequency (RF) heating was applied to implanted chitosan and alginate scaffolds at 4 applied voltages, 3 frequencies, and 2 thermally conditioning environments. A 3D finite element model was developed to simulate the RF treatment. A uniform RF heating was achieved at the scaffold top. For alginate, voltage was the only significant RF heating factor while both frequency and voltage significantly affected RF heating of chitosan. Less temperature gradient across the scaffold was achieved at a conditioning environment at More >

Displaying 1-10 on page 1 of 109. Per Page