Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    REVIEW

    A COMPREHENSIVE REVIEW ON MICROCHANNEL HEAT EXCHANGERS, HEAT SINK, AND POLYMER HEAT EXCHANGERS: CURRENT STATE OF THE ART

    Vikas Gulia, Anirban Sur*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-10, 2022, DOI:10.5098/hmt.18.40

    Abstract Over the past few decades, the world is moving towards miniature products owing to the technological developments in variegated industrial domains such as aerospace, biomedical, electronics, etc. This has led to the exponential growth of efficient micro cooling systems which are light in weight and have effective thermal performance. Microchannel Heat Sinks and Microchannel Heat Exchangers are the widely adopted solutions for such efficient micro cooling systems. This paper comprehensively reviews the recent developments in the field of Microchannel Heat Sinks and Microchannel Heat Exchangers. Initially, the concept of microchannel cooling is discussed. Further, a More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE OF LOW-COST COOLING SYSTEMS FOR TRANSMIT/RECEIVE MODULES OF PHASED ARRAY ANTENNAS WITH AND WITHOUT GRAVITY HEAT PIPES

    Yu.E. Nikolaenkoa , D.V. Pekurb,*, V.Yu. Кravetsa, V.M. Sorokinb, D.V. Kozaka , R.S. Melnyka, L.V. Lipnitskyia, A.S. Solomakhaa

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-13, 2022, DOI:10.5098/hmt.18.23

    Abstract This study compares thermal characteristics of two design versions of a new low-cost air-cooling system with a standard heat sink profile and built-in flat heat pipes of a simple design with a similar cooling system design without the heat pipes. The aim of the work is to determining the thermal characteristics and choosing the most effective option in a practical context. Using computer simulation in the Solidworks Flow Simulation standard software package allowed determining how the temperature of 8 transistors with a total power of 224 W was affected by changes in air velocity from… More >

  • Open Access

    ARTICLE

    Numerical Study on Heat Transfer Characteristic of the Plate-Fin Microchannel Heat Sink for Water-Based Thermal Management of CPU Chip

    Jie-Chao Chen, Rui-Hao Luo, Wu-Zhi Yuan, Nan-Long Hong*, Wen-Hao Wang

    Energy Engineering, Vol.119, No.4, pp. 1327-1339, 2022, DOI:10.32604/ee.2022.019331 - 23 May 2022

    Abstract For effective water-based thermal management of high heat generating CPU chip, a series of numerical simulation has been conducted to study the effects of heat flux, fin height and flow rate on convective thermal performance of the plate-fin microchannel heat sinks. The characteristics of heat transfer and flow resistance have been quantificationally discussed and JF factor is employed to evaluate the comprehensive efficiency of convective heat transfer of microchannel heat sink. Results show that the increase in fin height and flow rate of cooling water is helpful to decrease the maximum temperature of CPU chip. Large More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Simulation of Nanoparticle Transport and Attachment in a Microchannel Heat Sink

    Xiaokang Tian1, Kai Yue1,2,*, Yu You1,2, Yongjian Niu1, Xinxin Zhang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 301-317, 2021, DOI:10.32604/fdmp.2021.013521 - 02 April 2021

    Abstract The heat transfer performances of a microchannel heat sink in the presence of a nanofluid can be affected by the attachment of nanoparticle (NP) on the microchannel wall. In this study, the mechanisms underlying NP transport and attachment are comprehensively analyzed by means of a coupled double-distribution-function lattice Boltzmann model combined with lattice-gas automata. Using this approach, the temperature distribution and the two-phase flow pattern are obtained for different values of the influential parameters. The results indicate that the number of attached NPs decrease exponentially as their diameter and the fluid velocity grow. An increase… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of a Hybrid Jet-Impingement/Micro-Channel Heat Sink

    Taidong Xu1,2, Hao Liu2, Dejun Zhang1,2, Yadong Li2, Xiaoming Zhou2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 109-121, 2021, DOI:10.32604/fdmp.2021.010608 - 09 February 2021

    Abstract With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit, new strategies are needed to extract heat from these devices in an efficient way. In this regard methods based on the combination of the so-called “jet impingement” and “micro-channel” approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields. In this paper, a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model. Dedicated CFD simulation of the coupled flow/temperature More >

  • Open Access

    ARTICLE

    Second Law Analysis and Optimization of Elliptical Pin Fin Heat Sinks Using Firefly Algorithm

    Nawaf N. Hamadneh1, Waqar A. Khan2, Ilyas Khan3, *

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1015-1032, 2020, DOI:10.32604/cmc.2020.011476 - 20 August 2020

    Abstract One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size. These heat sinks utilize plate or pin fins depending upon the required heat dissipation rate. They are designed to optimize overall performance. Elliptical pin fin heat sinks enhance heat transfer rates and reduce the pumping power. In this study, the Firefly Algorithm is implemented to optimize heat sinks with elliptical pin-fins. The pin-fins are arranged in an inline fashion. The natureinspired metaheuristic algorithm performs powerfully and efficiently in solving numerical… More >

  • Open Access

    ARTICLE

    Thermal Modeling and Analysis of Metal Foam Heat Sink with Thermal Equilibrium and Non-Equilibrium Models

    Yongtong Li1, Liang Gong1, *, Hui Lu1, Dexin Zhang1, Bin Ding1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 895-912, 2020, DOI:10.32604/cmes.2020.09009 - 01 May 2020

    Abstract In the present study, the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium (LTNE) model and local thermal equilibrium (LTE) model. Temperature field distributions and temperature difference field distributions of solid and fluid phases were presented. Detailed thermal performance comparisons based on the LTE and LTNE models were evaluated by considering the effects of the relevant metal foam morphological and channel geometrical parameters. Results indicate that a distinct temperature difference exists between the solid and fluid phases when the LTNE effect is pronounced. The average Nusselt numbers… More >

  • Open Access

    ARTICLE

    AN ITERTIVE DESIGN METHOD TO REDUCE THE OVERALL THERMAL RESISTANCE IN A CONJUGATE CONDUCTION-FREE CONVECTION CONFIGURATION

    Chadwick D. Sevart* , Theodore L. Bergman

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-18, 2019, DOI:10.5098/hmt.13.18

    Abstract A design approach is proposed and demonstrated to identify desirable two-dimensional solid geometries, cooled by natural convection, that offer superior thermal performance in terms of reduced overall (conduction-convection) thermal resistance. The approach utilizes (i) heat transfer modeling in conjunction with (ii) various novel shape evolution rules. Predictions demonstrate the evolution of the solid shape and associated reduction of the overall thermal resistance. Parametric simulations reveal the dependence of the predicted solid shape on the evolution rule employed, the thermal conductivity of the solid material, and the strength of advection within the fluid. More >

  • Open Access

    ARTICLE

    THERMAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT OF RIB HEAT SINK FOR CPU

    Ming Zhao* , Yang Tian

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-10, 2019, DOI:10.5098/hmt.13.4

    Abstract The field synergy principle and thermal resistance analysis were carried out for the heat transfer enhancement of a chip heat sink. Thermal analysis of the heat dissipation capacity is applied for setting up the gallery on the rib, changing the fan ventilation diameter, and changing the rib height. The results show that the analysis of field synergy principle agrees well with that of the thermal analysis, and setting up a gallery on the rib can improve the heat capacity of the heat sink. Meanwhile, the results also show that decreasing diameter of the ventilation causes More >

  • Open Access

    ARTICLE

    TRANSIENT MODELLING OF AN EV INVERTER HEAT SINK WITH PCM

    B. Orra,* , R. Singha, T. L. Phana , M. Mochizukib

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-6, 2019, DOI:10.5098/hmt.13.1

    Abstract One of the problems with cooling an IGBT inverter chip is that its heat generation is not constant. These chips tend to produce heat in pulses which results in high peak chip temperatures. Transient modelling is required to determine the suitability of a heat sink and to ensure the max peak temperature is not exceeded. This paper demonstrates a method of transient thermal analysis using a thermal resistance / capacitor network. A sample heat sink was modelled and then experimentally tested to validate the model. A novel method of modelling phase change materials (PCM) using More >

Displaying 1-10 on page 1 of 20. Per Page