Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Analysis of Geometrical Arrangement and Packing Material on Heat Generation in Lithium-Ion Battery Banks

    Seenaa Khudhayer Salman1, Shaymaa Husham Abdulmalek2,*, Ali Ahmed Gitan1, Thamer Khalif Salem3, Raaid Rashad Jassem Al-Doury3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073940 - 27 January 2026

    Abstract Operating Lithium-ion batteries at their temperature limits is a challenging design task due to explosion risk at high temperatures and rapid degradation at low temperatures. Depending on the battery package design, those risks can be solved with passive solutions, which require no active cooling or heating. The current work aims to optimize the pack design and materials of the type-NCR18650B battery based on a wide range of operation temperature. The lower limit was denoted by cold case while the maximum limit was expressed by hot case. A combined analytical-numerical approach was developed to model the… More >

  • Open Access

    ARTICLE

    Characteristics of Heat Transfer in a Reactive Third-Grade Fluid Flow through Porous Plates with Uniform Suction/Injection

    Rajiva Lochan Mohanty, Sumanta Chaudhuri*, Anish Pandey

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 899-919, 2025, DOI:10.32604/fhmt.2025.064444 - 30 June 2025

    Abstract Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs, heat exchangers, marine propulsion, and aerodynamics. The current study investigates the characteristics of heat transport in a reactive third-grade fluid, moving through permeable parallel plates, with uniform suction/injection velocity. The two permeable, parallel plates are maintained at the same, constant temperature. After being transformed into its dimensionless equivalent, governing equations are solved by employing the Least Squares Method (LSM). The LSM results are further validated… More >

  • Open Access

    ARTICLE

    Influence of Microwave Power and Heating Time on the Drying Kinetics and Mechanical Properties of Eucalyptus gomphocephala Wood

    Mariam Habouria1, Sahbi Ouertani1,*, Noura Ben Mansour2, Soufien Azzouz1, Mohamed Taher Elaieb3

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 345-360, 2025, DOI:10.32604/fhmt.2024.057387 - 26 February 2025

    Abstract The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating (MWH) in two scenarios: intermittently and continuously. The mechanical properties and surface appearance of the heated samples were also investigated. Continuous and intermittent microwave drying kinetic experiments were conducted at a frequency of 2.45 GHz using a microwave laboratory oven at 300, 500, and 1000 watts. Drying rate curves indicated three distinct phases of MWH. Increasing the microwave power with a shorter drying time led to rapid increases in internal temperature and… More >

  • Open Access

    PROCEEDINGS

    Heat Generation, Plastic Deformation and Stresses Evolution in Inertia Friction Welding of Ni-Based Superalloy

    Chang-an Li1, Guoliang Qin1,*, Hao Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012370

    Abstract The interactions among thermal history, plastic deformation and stress in inertia friction welding (IFW) under different welding parameters have been widely considered a crucial issue and still not fully understood. A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism under different welding conditions. The numerical model successfully simulated the deceleration, deformation processes, and peak torsional moments in IFW and captured the evolution of temperature, plastic deformation, and stress. The simulated results were… More >

  • Open Access

    ARTICLE

    Advancements in Numerical Solutions: Fractal Runge-Kutta Approach to Model Time-Dependent MHD Newtonian Fluid with Rescaled Viscosity on Riga Plate

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1213-1241, 2024, DOI:10.32604/cmes.2024.054819 - 27 September 2024

    Abstract Fractal time-dependent issues in fluid dynamics provide a distinct difficulty in numerical analysis due to their complex characteristics, necessitating specialized computing techniques for precise and economical solutions. This study presents an innovative computational approach to tackle these difficulties. The main focus is applying the Fractal Runge-Kutta Method to model the time-dependent magnetohydrodynamic (MHD) Newtonian fluid with rescaled viscosity flow on Riga plates. An efficient computational scheme is proposed for handling fractal time-dependent problems in flow phenomena. The scheme is comprised of three stages and constructed using three different time levels. The stability of the scheme… More >

  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788 - 21 March 2024

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive More >

  • Open Access

    ARTICLE

    Analysis of Capacity Decay, Impedance, and Heat Generation of Lithium-ion Batteries Experiencing Multiple Simultaneous Abuse Conditions

    Casey Jones, Meghana Sudarshan, Vikas Tomar*

    Energy Engineering, Vol.120, No.12, pp. 2721-2740, 2023, DOI:10.32604/ee.2023.043219 - 29 November 2023

    Abstract Abuse of Lithium-ion batteries, both physical and electrochemical, can lead to significantly reduced operational capabilities. In some instances, abuse can cause catastrophic failure, including thermal runaway, combustion, and explosion. Many different test standards that include abuse conditions have been developed, but these generally consider only one condition at a time and only provide go/no-go criteria. In this work, different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure. Vibrational loading is chosen to be the consistent type of physical abuse, and the first… More >

  • Open Access

    ARTICLE

    Influence of Thermophoresis and Brownian Motion of Nanoparticles on Radiative Chemically-Reacting MHD Hiemenz Flow over a Nonlinear Stretching Sheet with Heat Generation

    S. Mohammed Ibrahim1, P. Vijaya Kumar2, G. Lorenzini3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 855-868, 2023, DOI:10.32604/fdmp.2022.019796 - 02 November 2022

    Abstract In this study, a radiative MHD stagnation point flow over a nonlinear stretching sheet incorporating thermophoresis and Brownian motion is considered. Using a similarity method to reshape the underlying Partial differential equations into a set of ordinary differential equations (ODEs), the implications of heat generation, and chemical reaction on the flow field are described in detail. Moreover a Homotopy analysis method (HAM) is used to interpret the related mechanisms. It is found that an increase in the magnetic and velocity exponent parameters can damp the fluid velocity, while thermophoresis and Brownian motion promote specific thermal More >

  • Open Access

    ARTICLE

    EFFECT OF DIFFUSION-THERMO ON MHD FLOW OF MAXWELL FLUID WITH HEAT AND MASS TRANSFER

    Muhammad Ramzana,*, Zaib Un Nisab , Mudassar Nazara,c,†

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.12

    Abstract A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo, fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures, it is observed that fluid motion decreases with increasing values of Schmidt number and chemical More >

  • Open Access

    ARTICLE

    Impacts of Rotation on Unsteady Fluid Flow and Energy Distribution through a Bending Duct with Rectangular Cross Section

    Mohammad Zohurul Islam1, Rabindra Nath Mondal2, Suvash C. Saha1,*

    Energy Engineering, Vol.119, No.2, pp. 453-472, 2022, DOI:10.32604/ee.2022.018160 - 24 January 2022

    Abstract

    A depth understanding of fluid flow past a curved duct having rectangular cross-section with different aspect ratios (l) are essential for various engineering applications such as in chemical, mechanical, bio-mechanical and bio-medical engineering. So highly ambitious researchers have given significant attention to study new characteristics of fluid flow in a curved duct. The flow characterization in the rectangular duct has been studied over a wide range of numerical and selective experimental studies. However, proper knowledge with the effects of Coriolis force for different aspect ratios is important for better understanding of the transitional behaviour and

    More >

Displaying 1-10 on page 1 of 26. Per Page