Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    AN EFFECT OF CATTANEO CHRISTOV HEAT FLUX MODEL FOR EYRING POWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET

    B. Ahmad*, Z. Iqbal

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.22

    Abstract We examine the behavior of Cattaneo-Christov heat flux model for two-dimensional incompressible flow of Eyring Powell fluid passed over an exponentially stretching sheet. Mathematical formulation is performed by assuming boundary layer approximation. Cattaneo Christov heat flux model is applied to analyze the heat transport phenomenon. Thermal relaxation time is envisaged on the layer induced due to boundary. The governing Partial Differential equations are converted into Ordinary differential equations by the appropriate use of similarity transformation. Shooting approach is used to tackle the obtained boundary layer equations. The effects of obtained similarity parameters are plotted and discussed. Computation results reveal that… More >

  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are utilized to resolve the altered… More >

  • Open Access

    ARTICLE

    EFFECT OF CATTANEO-CHRISTOV HEAT FLUX ON NONLINEAR RADIATIVE MHD FLOW OF CASSON FLUID INDUCED BY A SEMIINFINTE STRETCHING SURFACE

    M. Sathish Kumara , N. Sandeepa,*, B. Rushi Kumara , J. Prakashb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.8

    Abstract In this study, a numerical investigation is performed to analyse the flow and heat transfer characteristic of magnetohydrodynamic Casson fluid flow past a semi-infinite stretching surface in the presence of Cattaneo – Christov heat flux and nonlinear thermal radiation. Appropriate transformations are employed to reduce the governing partial differential equations into ordinary differential equations. Further, solutions of the ordinary differential equation are obtained with the aid of Runge- Kutta based shooting technique. The effect of various non- dimensional governing parameters on velocity and temperature fields for suction and injection cases are discussed with the help of graphs. Also computed and… More >

  • Open Access

    ARTICLE

    WILLIAMSON FLUID FLOW BEHAVIOUR OF MHD CONVECTIVERADIATIVE CATTANEO–CHRISTOV HEAT FLUX TYPE OVER A LINEARLY STRETCHED-SURFACE WITH HEAT GENERATION AND THERMAL-DIFFUSION

    Md. Shakhaoath Khana,*, Md. Mizanur Rahmana,b, S.M. Arifuzzamanc , Pronab Biswasc , Ifsana Karima

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-11, 2017, DOI:10.5098/hmt.9.15

    Abstract A two-dimensional (2D) flow of an incompressible Williamson fluid of Cattaneo–Christov heat flux type over a linearly stretched surface with the influence of magnetic field, thermal radiation-diffusion, heat generation and viscous dissipation is carried out in the present study. To develop a Williamson flow model, a boundary layer approximation is taken into account. The non-dimensional, nonlinear, coupled ordinary differential equations with boundary condition are solved numerically using Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme. The influences of physical parameters on the velocity, temperature, concentration is analysed through graphical consequences. To validate the accuracy of the numerical… More >

  • Open Access

    ARTICLE

    EFFECT OF ELASTIC DEFORMATION ON NANO-SECOND GRADE FLUID FLOW OVER A STRETCHING SURFACE

    R. Kalaivanana , B. Gangab , N. Vishnu Ganeshc, A.K. Abdul Hakeema,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.20

    Abstract The main aim of the present article is to investigate the elastic deformation effects on the boundary layer flow of an incompressible second grade twophase nanofluid model over a stretching surface in the presence of suction and partial slip boundary condition. The second grade nanofluid model with elastic deformation effects is investigated for the first time. The combined effects of elastic deformation, Brownian motion and thermophoresis are also analyzed for the first time. To analyses the heat transfer, heat and mass flux boundary conditions are considered. The governing boundary layer nonlinear partial differential equations are converted into a set of… More >

  • Open Access

    ARTICLE

    IMPACT OF CATTANEO-CHRISTOV HEAT FLUX IN THE CASSON FLUID FLOW OVER A STRETCHING SURFACE WITH ALIGNED MAGNETIC FIELD AND HOMOGENEOUS - HETEROGENEOUS CHEMICAL REACTION

    P. Bala Anki Reddya,*, S. Suneethab

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.7

    Abstract This work concentrates on the effects of homogeneous-heterogeneous chemical reactions on MHD boundary layer flow of Casson fluid over a stretching surface. Cattaneo-Christov heat flux model is considered instead of classical Fourier’s law to explore the heat transfer phenomena. Appropriate similarity transformations are used to convert the governing partial differential equations into a system of coupled non-linear differential equations. The resulting coupled non-linear differential equations are solved numerically by using the fourth order Runge-Kutta method with shooting technique. The impact of significant parameters on velocity, temperature, concentration, skin friction coefficient and the Nusselt number are presented graphically and in tabular… More >

  • Open Access

    ARTICLE

    UNSTEADY BOUNDARY LAYER FLOW AND HEAT TRANSFER OF MAXWELL VISCOELASTIC FLUID WITH TIME FRACTIONAL CATTANEO-CHRISTOV HEAT FLUX MODEL

    Mengchen Zhanga , Hui Chenb,*, Ming Shena

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.21

    Abstract The time fractional Cattaneo-Christov flux heat model is first introduced to investigate the flow and heat transfer of Maxwell viscoelastic fluid past a vertical flat plate. Fractional constitutive relation and Cattaneo-Christov heat flux model are applied to construct the governing boundary layer equations of momentum and energy, which are nondimensionalized by new dimensionless variables and solved numerically. The results indicate that there exist intersections on velocity and temperature profiles for different values of Prandtl number when the fractional Cattaneo-Christov flux heat model is considered. More >

  • Open Access

    ARTICLE

    SLIP EFFECT ON HEAT AND MASS TRANSFER IN CASSON FLUID WITH CATTANEO-CHRISTOVE HEAT FLUX MODEL

    P. Bala Anki Reddya , B. Mallikarjunab,*,K. Madhu Sudhan Reddya

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-10, 2018, DOI:10.5098/hmt.11.5

    Abstract In this paper, a mathematical model has been developed to analyze the double diffusive convective flow of Casson fluid over an inclined stretching sheet with Cattaneo-Christov Heat Flux model. The velocity slip is considered over the surface of the stretching sheet as well. The governing equations for the pertinent model are transformed into non-dimensional highly coupled nonlinear differential equations using similarity transformations. The implicit finite difference method is used to carry out the numerical results and presented the graphs for different values of the physical parameter, Casson fluid parameter, and thermal relation time parameter, chemical reaction parameter for the cases… More >

  • Open Access

    ARTICLE

    WALL HEAT FLUX PARTITIONING ANALYSIS FOR SUBCOOLED FLOW BOILING OF WATER-ETHANOL MIXTURE IN CONVENTIONAL CHANNEL

    B.G. Suhasa,* , A. Sathyabhamab, Kavadiki Veerabhadrappaa , R. Suresh Kumara, U. Kiran Kumara

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.16

    Abstract In the present study, heat transfer coefficient of water-ethanol mixture in the subcooled boiling region is determined in a rectangular conventional channel (Channel size ≥3 mm). When the heat flux and mass flux increase it is observed that heat transfer coefficient increases. But the effect of heat flux is significant when compared with that of mass flux in the subcooled boiling region. It is found that maximum and minimum heat transfer coefficient are observed for mixture with 25% Ethanol volume fraction and 75% Ethanol volume fraction respectively. Wall heat flux partitioning analyses is carried out for mixture with different ethanol… More >

  • Open Access

    ARTICLE

    EFFECTS OF VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ON FORCED CONVECTION FLOW OF HERSCHELBULKLEY FLUID IN CIRCULAR DUCT WITH AXIALLY VARIABLE WALL HEAT FLUX

    Rabha Khatyr*, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-11, 2020, DOI:10.5098/hmt.15.5

    Abstract The present study focuses on the effects of viscous dissipation and axial heat conduction on the asymptotic behavior of the laminar forced convection in a circular duct for a Herschel-Bulkley fluid with variable wall heat flux. Analytical asymptotic solutions are presented for the case of axial variations of the wall heat flux, with finite non-vanishing values at infinity along the flow direction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and mixing temperature distributions are evaluated analytically in the case of axially variable wall heat flux for which polynomial and logarithmic functions are considered as examples. It… More >

Displaying 11-20 on page 2 of 39. Per Page