Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Deep Learning-Driven Anomaly Detection for IoMT-Based Smart Healthcare Systems

    Attiya Khan1, Muhammad Rizwan2, Ovidiu Bagdasar2,3, Abdulatif Alabdulatif4,*, Sulaiman Alamro4, Abdullah Alnajim5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2121-2141, 2024, DOI:10.32604/cmes.2024.054380 - 31 October 2024

    Abstract The Internet of Medical Things (IoMT) is an emerging technology that combines the Internet of Things (IoT) into the healthcare sector, which brings remarkable benefits to facilitate remote patient monitoring and reduce treatment costs. As IoMT devices become more scalable, Smart Healthcare Systems (SHS) have become increasingly vulnerable to cyberattacks. Intrusion Detection Systems (IDS) play a crucial role in maintaining network security. An IDS monitors systems or networks for suspicious activities or potential threats, safeguarding internal networks. This paper presents the development of an IDS based on deep learning techniques utilizing benchmark datasets. We propose More >

  • Open Access

    REVIEW

    IoMT-Based Healthcare Systems: A Review

    Tahir Abbas1,*, Ali Haider Khan2, Khadija Kanwal3, Ali Daud4,*, Muhammad Irfan5, Amal Bukhari6, Riad Alharbey6

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 871-895, 2024, DOI:10.32604/csse.2024.049026 - 17 July 2024

    Abstract The integration of the Internet of Medical Things (IoMT) and the Internet of Things (IoT), which has revolutionized patient care through features like remote critical care and real-time therapy, is examined in this study in response to the changing healthcare landscape. Even with these improvements, security threats are associated with the increased connectivity of medical equipment, which calls for a thorough assessment. With a primary focus on addressing security and performance enhancement challenges, the research classifies current IoT communication devices, examines their applications in IoMT, and investigates important aspects of IoMT devices in healthcare. The More >

  • Open Access

    ARTICLE

    Adaptation of Federated Explainable Artificial Intelligence for Efficient and Secure E-Healthcare Systems

    Rabia Abid1, Muhammad Rizwan2, Abdulatif Alabdulatif3,*, Abdullah Alnajim4, Meznah Alamro5, Mourade Azrour6

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3413-3429, 2024, DOI:10.32604/cmc.2024.046880 - 26 March 2024

    Abstract Explainable Artificial Intelligence (XAI) has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning (ML) and Deep Learning (DL) based algorithms. In this paper, we chose e-healthcare systems for efficient decision-making and data classification, especially in data security, data handling, diagnostics, laboratories, and decision-making. Federated Machine Learning (FML) is a new and advanced technology that helps to maintain privacy for Personal Health Records (PHR) and handle a large amount of medical data effectively. In this context, XAI, along with FML, increases efficiency and improves the More >

  • Open Access

    ARTICLE

    IoT Task Offloading in Edge Computing Using Non-Cooperative Game Theory for Healthcare Systems

    Dinesh Mavaluru1,*, Chettupally Anil Carie2, Ahmed I. Alutaibi3, Satish Anamalamudi2, Bayapa Reddy Narapureddy4, Murali Krishna Enduri2, Md Ezaz Ahmed1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1487-1503, 2024, DOI:10.32604/cmes.2023.045277 - 29 January 2024

    Abstract In this paper, we present a comprehensive system model for Industrial Internet of Things (IIoT) networks empowered by Non-Orthogonal Multiple Access (NOMA) and Mobile Edge Computing (MEC) technologies. The network comprises essential components such as base stations, edge servers, and numerous IIoT devices characterized by limited energy and computing capacities. The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption. The system operates in discrete time slots and employs a quasi-static approach, with a specific focus on the complexities of… More >

  • Open Access

    ARTICLE

    Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems

    Mustufa Haider Abidi*, Hisham Alkhalefah, Mohamed K. Aboudaif

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 977-997, 2024, DOI:10.32604/cmes.2023.044169 - 30 December 2023

    Abstract The healthcare data requires accurate disease detection analysis, real-time monitoring, and advancements to ensure proper treatment for patients. Consequently, Machine Learning methods are widely utilized in Smart Healthcare Systems (SHS) to extract valuable features from heterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities. These methods are employed across different domains that are susceptible to adversarial attacks, necessitating careful consideration. Hence, this paper proposes a crossover-based Multilayer Perceptron (CMLP) model. The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on the medical… More >

  • Open Access

    ARTICLE

    Threshold-Based Software-Defined Networking (SDN) Solution for Healthcare Systems against Intrusion Attacks

    Laila M. Halman, Mohammed J. F. Alenazi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1469-1483, 2024, DOI:10.32604/cmes.2023.028077 - 17 November 2023

    Abstract The healthcare sector holds valuable and sensitive data. The amount of this data and the need to handle, exchange, and protect it, has been increasing at a fast pace. Due to their nature, software-defined networks (SDNs) are widely used in healthcare systems, as they ensure effective resource utilization, safety, great network management, and monitoring. In this sector, due to the value of the data, SDNs face a major challenge posed by a wide range of attacks, such as distributed denial of service (DDoS) and probe attacks. These attacks reduce network performance, causing the degradation of… More > Graphic Abstract

    Threshold-Based Software-Defined Networking (SDN) Solution for Healthcare Systems against Intrusion Attacks

  • Open Access

    REVIEW

    A Systematic Review on the Internet of Medical Things: Techniques, Open Issues, and Future Directions

    Apurva Sonavane1, Aditya Khamparia2,*, Deepak Gupta3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1525-1550, 2023, DOI:10.32604/cmes.2023.028203 - 26 June 2023

    Abstract IoT usage in healthcare is one of the fastest growing domains all over the world which applies to every age group. Internet of Medical Things (IoMT) bridges the gap between the medical and IoT field where medical devices communicate with each other through a wireless communication network. Advancement in IoMT makes human lives easy and better. This paper provides a comprehensive detailed literature survey to investigate different IoMT-driven applications, methodologies, and techniques to ensure the sustainability of IoMT-driven systems. The limitations of existing IoMT frameworks are also analyzed concerning their applicability in real-time driven systems More >

  • Open Access

    ARTICLE

    Hybrid Mobile Cloud Computing Architecture with Load Balancing for Healthcare Systems

    Ahyoung Lee1, Jui Mhatre1, Rupak Kumar Das2, Min Hong3,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 435-452, 2023, DOI:10.32604/cmc.2023.029340 - 22 September 2022

    Abstract Healthcare is a fundamental part of every individual’s life. The healthcare industry is developing very rapidly with the help of advanced technologies. Many researchers are trying to build cloud-based healthcare applications that can be accessed by healthcare professionals from their premises, as well as by patients from their mobile devices through communication interfaces. These systems promote reliable and remote interactions between patients and healthcare professionals. However, there are several limitations to these innovative cloud computing-based systems, namely network availability, latency, battery life and resource availability. We propose a hybrid mobile cloud computing (HMCC) architecture to More >

  • Open Access

    ARTICLE

    Secure and Anonymous Three-Factor Authentication Scheme for Remote Healthcare Systems

    Munayfah Alanazi*, Shadi Nashwan

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 703-725, 2022, DOI:10.32604/csse.2022.022962 - 04 January 2022

    Abstract Wireless medical sensor networks (WMSNs) play a significant role in increasing the availability of remote healthcare systems. The vital and physiological data of the patient can be collected using the WMSN via sensor nodes that are placed on his/her body and then transmitted remotely to a healthcare professional for proper diagnosis. The protection of the patient’s privacy and their data from unauthorized access is a major concern in such systems. Therefore, an authentication scheme with a high level of security is one of the most effective mechanisms by which to address these security concerns. Many… More >

  • Open Access

    ARTICLE

    IoMT-Enabled Fusion-Based Model to Predict Posture for Smart Healthcare Systems

    Taher M. Ghazal1,2,*, Mohammad Kamrul Hasan1, Siti Norul Huda Abdullah1, Khairul Azmi Abubakkar1, Mohammed A. M. Afifi2

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2579-2597, 2022, DOI:10.32604/cmc.2022.019706 - 07 December 2021

    Abstract Smart healthcare applications depend on data from wearable sensors (WSs) mounted on a patient’s body for frequent monitoring information. Healthcare systems depend on multi-level data for detecting illnesses and consequently delivering correct diagnostic measures. The collection of WS data and integration of that data for diagnostic purposes is a difficult task. This paper proposes an Errorless Data Fusion (EDF) approach to increase posture recognition accuracy. The research is based on a case study in a health organization. With the rise in smart healthcare systems, WS data fusion necessitates careful attention to provide sensitive analysis of… More >

Displaying 1-10 on page 1 of 12. Per Page