Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (288)
  • Open Access

    ARTICLE

    Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography

    K. Saranya*, K. Premalatha

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2029-2042, 2023, DOI:10.32604/iasc.2023.027949 - 19 July 2022

    Abstract Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy. In this background, several authentication and accessibility issues emerge with an intention to protect the sensitive details of the patients over getting published in open domain. To solve this problem, Multi Attribute Case based Privacy Preservation (MACPP) technique is proposed in this study to enhance the security of privacy-preserving data. Private information can be any attribute information which is categorized as sensitive logs in a patient’s records. The semantic relation between transactional More >

  • Open Access

    ARTICLE

    Analysis of Brain MRI: AI-Assisted Healthcare Framework for the Smart Cities

    Walid El-Shafai1,*, Randa Ali1, Ahmed Sedik2, Taha El-Sayed Taha1, Mohammed Abd-Elnaby3, Fathi E. Abd El-Samie1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1843-1856, 2023, DOI:10.32604/iasc.2023.019198 - 19 July 2022

    Abstract The use of intelligent machines to work and react like humans is vital in emerging smart cities. Computer-aided analysis of complex and huge MRI (Magnetic Resonance Imaging) scans is very important in healthcare applications. Among AI (Artificial Intelligence) driven healthcare applications, tumor detection is one of the contemporary research fields that have become attractive to researchers. There are several modalities of imaging performed on the brain for the purpose of tumor detection. This paper offers a deep learning approach for detecting brain tumors from MR (Magnetic Resonance) images based on changes in the division of… More >

  • Open Access

    ARTICLE

    Big Data Analytics with Optimal Deep Learning Model for Medical Image Classification

    Tariq Mohammed Alqahtani*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1433-1449, 2023, DOI:10.32604/csse.2023.025594 - 15 June 2022

    Abstract In recent years, huge volumes of healthcare data are getting generated in various forms. The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker. Due to such massive generation of big data, the utilization of new methods based on Big Data Analytics (BDA), Machine Learning (ML), and Artificial Intelligence (AI) have become essential. In this aspect, the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning (BDA-CSODL) technique for medical image classification on Apache Spark environment. The aim of… More >

  • Open Access

    ARTICLE

    Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model

    G. Ignisha Rajathi1, R. Ramesh Kumar2, D. Ravikumar3, T. Joel4, Seifedine Kadry4,5, Chang-Won Jeong6, Yunyoung Nam7,*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1793-1806, 2023, DOI:10.32604/csse.2023.024674 - 15 June 2022

    Abstract Recently, Internet of Medical Things (IoMT) has gained considerable attention to provide improved healthcare services to patients. Since earlier diagnosis of brain tumor (BT) using medical imaging becomes an essential task, automated IoMT and cloud enabled BT diagnosis model can be devised using recent deep learning models. With this motivation, this paper introduces a novel IoMT and cloud enabled BT diagnosis model, named IoMTC-HDBT. The IoMTC-HDBT model comprises the data acquisition process by the use of IoMT devices which captures the magnetic resonance imaging (MRI) brain images and transmit them to the cloud server. Besides,… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Enabled Human Activity Recognition for Improved Medical Services

    E. Dhiravidachelvi1, M.Suresh Kumar2, L. D. Vijay Anand3, D. Pritima4, Seifedine Kadry5, Byeong-Gwon Kang6, Yunyoung Nam7,*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 961-977, 2023, DOI:10.32604/csse.2023.024612 - 15 June 2022

    Abstract Human Activity Recognition (HAR) has been made simple in recent years, thanks to recent advancements made in Artificial Intelligence (AI) techniques. These techniques are applied in several areas like security, surveillance, healthcare, human-robot interaction, and entertainment. Since wearable sensor-based HAR system includes in-built sensors, human activities can be categorized based on sensor values. Further, it can also be employed in other applications such as gait diagnosis, observation of children/adult’s cognitive nature, stroke-patient hospital direction, Epilepsy and Parkinson’s disease examination, etc. Recently-developed Artificial Intelligence (AI) techniques, especially Deep Learning (DL) models can be deployed to accomplish… More >

  • Open Access

    ARTICLE

    Student’s Health Exercise Recognition Tool for E-Learning Education

    Tamara al Shloul1, Madiha Javeed2, Munkhjargal Gochoo3, Suliman A. Alsuhibany4, Yazeed Yasin Ghadi5, Ahmad Jalal2, Jeongmin Park6,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 149-161, 2023, DOI:10.32604/iasc.2023.026051 - 06 June 2022

    Abstract Due to the recently increased requirements of e-learning systems, multiple educational institutes such as kindergarten have transformed their learning towards virtual education. Automated student health exercise is a difficult task but an important one due to the physical education needs especially in young learners. The proposed system focuses on the necessary implementation of student health exercise recognition (SHER) using a modified Quaternion-based filter for inertial data refining and data fusion as the pre-processing steps. Further, cleansed data has been segmented using an overlapping windowing approach followed by patterns identification in the form of static and More >

  • Open Access

    ARTICLE

    Novel Block Chain Technique for Data Privacy and Access Anonymity in Smart Healthcare

    J. Priya*, C. Palanisamy

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 243-259, 2023, DOI:10.32604/iasc.2023.025719 - 06 June 2022

    Abstract The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internet and computing resources. In recent years, many more IoT applications have been extensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstacles faced by the extensive acceptance and usage of these emerging technologies are security and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, the existing system has issues with specific security issues,… More >

  • Open Access

    ARTICLE

    Energy Aware Clustering with Medical Data Classification Model in IoT Environment

    R. Bharathi1,*, T. Abirami2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 797-811, 2023, DOI:10.32604/csse.2023.025336 - 01 June 2022

    Abstract With the exponential developments of wireless networking and inexpensive Internet of Things (IoT), a wide range of applications has been designed to attain enhanced services. Due to the limited energy capacity of IoT devices, energy-aware clustering techniques can be highly preferable. At the same time, artificial intelligence (AI) techniques can be applied to perform appropriate disease diagnostic processes. With this motivation, this study designs a novel squirrel search algorithm-based energy-aware clustering with a medical data classification (SSAC-MDC) model in an IoT environment. The goal of the SSAC-MDC technique is to attain maximum energy efficiency and… More >

  • Open Access

    ARTICLE

    A Detailed Study on IoT Platform for ECG Monitoring Using Transfer Learning

    Md Saidul Islam*

    Journal on Internet of Things, Vol.4, No.3, pp. 127-140, 2022, DOI:10.32604/jiot.2022.037489 - 12 June 2023

    Abstract Internet of Things (IoT) technologies used in health have the potential to address systemic difficulties by offering tools for cost reduction while improving diagnostic and treatment efficiency. Numerous works on this subject focus on clarifying the constructs and interfaces between various components of an IoT platform, such as knowledge generation via smart sensors collecting biosignals from the human body and processing them via data mining and, in recent times, deep neural networks offered to host on cloud computing architecture. These approaches are intended to assist healthcare professionals in their daily activities. In this comparative research, More >

  • Open Access

    ARTICLE

    Cybersecurity Plan for a Healthcare Cloud-Based Solutions

    A. S. Yusuf1,*, A. Q. Ayinde2

    Journal of Cyber Security, Vol.4, No.3, pp. 185-188, 2022, DOI:10.32604/jcs.2022.035446 - 01 February 2023

    Abstract Hospitals provide daily health services for thousands of patients. People, processes, and technologies drive the objectives and goals of the hospitals to ensure optimal and satisfactory health care services are rendered to their customers. Due to the sensitivity of the organization data and patient data, it is essential to ensure that the confidentiality, integrity, availability, and security of these data are considered. The leadership of the organization (managers and executives) must integrate a robust security plan when choosing the technologies that will be used to drive the organization’s processes. This paper will evaluate the existing More >

Displaying 161-170 on page 17 of 288. Per Page