Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    REVIEW

    Review Article on Condition Assessment of Structures Using Electro-Mechanical Impedance Technique

    Krishna Kumar Maurya*, Anupam Rawat, Rama Shanker

    Structural Durability & Health Monitoring, Vol.16, No.2, pp. 97-128, 2022, DOI:10.32604/sdhm.2022.015732

    Abstract Structural health monitoring (SHM) is a process for determination of presence, location, severity of damages and remaining life of the infrastructures. SHM is widely applied in aerospace, mechanical and civil engineering systems to assess the conditions of structures to improve the operation, safety, serviceability and reliability, respectively. There are various SHM techniques for monitoring the health of structures such as global response based and local techniques. Damages occur in the structures due to its inability to withstand intended design loadings, physical environment and chemical environment. Therefore, damage identification is necessary to improve the durability of the structures for protection against… More >

  • Open Access

    ARTICLE

    Intelligent Cloud IoMT Health Monitoring-Based System for COVID-19

    Hameed AlQaheri1,*, Manash Sarkar2, Saptarshi Gupta3, Bhavya Gaur4

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 497-517, 2022, DOI:10.32604/cmc.2022.022735

    Abstract The most common alarming and dangerous disease in the world today is the coronavirus disease 2019 (COVID-19). The coronavirus is perceived as a group of coronaviruses which causes mild to severe respiratory diseases among human beings. The infection is spread by aerosols emitted from infected individuals during talking, sneezing, and coughing. Furthermore, infection can occur by touching a contaminated surface followed by transfer of the viral load to the face. Transmission may occur through aerosols that stay suspended in the air for extended periods of time in enclosed spaces. To stop the spread of the pandemic, it is crucial to… More >

  • Open Access

    ARTICLE

    Shape Sensing of Thin Shell Structure Based on Inverse Finite Element Method

    Zhanjun Wu1, Tengteng Li1, Jiachen Zhang2, Yifan Wu3, Jianle Li1, Lei Yang1, Hao Xu1,*

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 1-14, 2022, DOI:10.32604/sdhm.2022.019554

    Abstract Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and control of smart structures, and monitoring of structural integrity. As a model-based method, the inverse finite element method (iFEM) has been proved to be a valuable shape sensing tool that is suitable for complex structures. In this paper, we propose a novel approach for the shape sensing of thin shell structures with iFEM. Considering the structural form and stress characteristics of thin-walled structure, the error function consists of membrane and bending section strains only which is consistent with the Kirchhoff–Love shell theory.… More >

  • Open Access

    ARTICLE

    Aluminum Alloy Fatigue Crack Damage Prediction Based on Lamb Wave-Systematic Resampling Particle Filter Method

    Gaozheng Zhao1, Changchao Liu1, Lingyu Sun1, Ning Yang2, Lei Zhang1, Mingshun Jiang1, Lei Jia1, Qingmei Sui1,*

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 81-96, 2022, DOI:10.32604/sdhm.2022.016905

    Abstract Fatigue crack prediction is a critical aspect of prognostics and health management research. The particle filter algorithm based on Lamb wave is a potential tool to solve the nonlinear and non-Gaussian problems on fatigue growth, and it is widely used to predict the state of fatigue crack. This paper proposes a method of lamb wave-based early fatigue microcrack prediction with the aid of particle filters. With this method, which the changes in signal characteristics under different fatigue crack lengths are analyzed, and the state- and observation-equations of crack extension are established. Furthermore, an experiment is conducted to verify the feasibility… More >

  • Open Access

    ARTICLE

    Health Monitoring-Based Assessment of Reinforcement with Prestressed Steel Strand for Cable-Stayed Bridge

    Kexin Zhang*, Tianyu Qi, Dachao Li, Xingwei Xue, Yanfeng Li

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 53-80, 2022, DOI:10.32604/sdhm.2021.016130

    Abstract This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands. To verify the effectiveness of external prestressed strand reinforcement method. Static load tests and health monitoring-based assessment were carried out before and after reinforcement. Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20% after reinforcement, and the flexural strength and stiffness of the strengthened beam are improved. The deflection and strain data of health monitoring of the specified section are collected. The deflection of the second span is 4 mm~10 mm, the strain… More >

  • Open Access

    ARTICLE

    A Study on Technological Dynamics in Structural Health Monitoring Using Intelligent Fault Diagnosis Techniques: A Patent-Based Approach

    Saqlain Abbas1,2,*, Zulkarnain Abbas3, Xiaotong Tu4, Yanping Zhu1

    Journal on Artificial Intelligence, Vol.3, No.3, pp. 97-113, 2021, DOI:10.32604/jai.2021.023020

    Abstract The performance and reliability of structural components are greatly influenced by the presence of any abnormality in them. To this purpose, structural health monitoring (SHM) is recognized as a necessary tool to ensure the safety precautions and efficiency of both mechanical and civil infrastructures. Till now, most of the previous work has emphasized the functioning of several SHM techniques and systematic changes in SHM execution. However, there exist insufficient data in the literature regarding the patent-based technological developments in the SHM research domain which might be a useful source of detailed information for worldwide research institutes. To address this research… More >

  • Open Access

    ARTICLE

    Traffic Priority-Aware Medical Data Dissemination Scheme for IoT Based WBASN Healthcare Applications

    Muhammad Anwar1, Farhan Masud2, Rizwan Aslam Butt3, Sevia Mahdaliza Idrus4,*, Mohammad Nazir Ahmad5, Mohd Yazid Bajuri6

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4443-4456, 2022, DOI:10.32604/cmc.2022.022826

    Abstract Wireless Body Area Sensor Network (WBASN) is an automated system for remote health monitoring of patients. WBASN under umbrella of Internet of Things (IoT) is comprised of small Biomedical Sensor Nodes (BSNs) that can communicate with each other without human involvement. These BSNs can be placed on human body or inside the skin of the patients to regularly monitor their vital signs. The BSNs generate critical data as it is related to patient's health. The data traffic can be classified as Sensitive Data (SD) and Non-sensitive Data (ND) packets based on the value of vital signs. These data packets have… More >

  • Open Access

    ARTICLE

    Improved Key Agreement Based Kerberos Protocol for M-Health Security

    P. Thirumoorthy1,*, K. S. Bhuvaneshwari2, C. Kamalanathan3, P. Sunita3, E. Prabhu4, S. Maheswaran5

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 577-587, 2022, DOI:10.32604/csse.2022.021717

    Abstract The development of wireless sensor network with Internet of Things (IoT) predicts various applications in the field of healthcare and cloud computing. This can give promising results on mobile health care (M-health) and Telecare medicine information systems. M-health system on cloud Internet of Things (IoT) through wireless sensor network (WSN) becomes the rising research for the need of modern society. Sensor devices attached to the patients’ body which is connected to the mobile device can ease the medical services. Security is the key connect for optimal performance of the m-health system that share the data of patients in wireless networks… More >

  • Open Access

    ARTICLE

    IoT-Based Reusable Medical Suit for Daily Life Use in the Era of COVID-19

    Abdelhamied A. Ateya1,2, Abeer D. Algarni1, Hanaa A. Abdallah1,2, Naglaa F. Soliman1,2,*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 255-270, 2022, DOI:10.32604/iasc.2022.021322

    Abstract Coronavirus disease (COVID-19) is a big problem that scares people all over the world. Life over the world has changed, new aspects for daily life have been introduced. A main problem with COVID-19 is the way it spreads. Covid-19 spreads, primarily, through contact with an infected person when they cough or sneeze, or with an infected surface. Thus, a novel way to make a protection against COVID-19 is to stay away or make yourself isolated from infected people and surfaces. To this end, this work, mainly, aims to design and develop a novel auto-sterilized suit embedded with some medical sensors… More >

  • Open Access

    ARTICLE

    An IoT Based Secure Patient Health Monitoring System

    Kusum Yadav1, Ali Alharbi1, Anurag Jain2,*, Rabie A. Ramadan1

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3637-3652, 2022, DOI:10.32604/cmc.2022.020614

    Abstract Internet of things (IoT) field has emerged due to the rapid growth of artificial intelligence and communication technologies. The use of IoT technology in modern healthcare environments is convenient for doctors and patients as it can be used in real-time monitoring of patients, proper administration of patient information, and healthcare management. However, the usage of IoT in the healthcare domain will become a nightmare if patient information is not securely maintained while transferring over an insecure network or storing at the administrator end. In this manuscript, the authors have developed a secure IoT healthcare monitoring system using the Blockchain-based XOR… More >

Displaying 21-30 on page 3 of 72. Per Page