Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    REVIEW

    A Review of Image Steganography Based on Multiple Hashing Algorithm

    Abdullah Alenizi1, Mohammad Sajid Mohammadi2, Ahmad A. Al-Hajji2, Arshiya Sajid Ansari1,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2463-2494, 2024, DOI:10.32604/cmc.2024.051826 - 15 August 2024

    Abstract Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item. From ancient times to the present, the security of secret or vital information has always been a significant problem. The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest. Therefore, several approaches, including steganography, have been developed by researchers over time to enable safe data transit. In this review, we have discussed image steganography based on Discrete Cosine Transform (DCT) algorithm, etc. We have also discussed image steganography based… More >

  • Open Access

    ARTICLE

    Fusion of Hash-Based Hard and Soft Biometrics for Enhancing Face Image Database Search and Retrieval

    Ameerah Abdullah Alshahrani*, Emad Sami Jaha, Nahed Alowidi

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3489-3509, 2023, DOI:10.32604/cmc.2023.044490 - 26 December 2023

    Abstract The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade, owing to the continuing advances in image processing and computer vision approaches. In multiple real-life applications, for example, social media, content-based face picture retrieval is a well-invested technique for large-scale databases, where there is a significant necessity for reliable retrieval capabilities enabling quick search in a vast number of pictures. Humans widely employ faces for recognizing and identifying people. Thus, face recognition through formal or personal pictures is increasingly used in various real-life applications,… More >

  • Open Access

    ARTICLE

    An Efficient Encrypted Speech Retrieval Based on Unsupervised Hashing and B+ Tree Dynamic Index

    Qiu-yu Zhang*, Yu-gui Jia, Fang-Peng Li, Le-Tian Fan

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 107-128, 2023, DOI:10.32604/cmc.2023.038911 - 08 June 2023

    Abstract Existing speech retrieval systems are frequently confronted with expanding volumes of speech data. The dynamic updating strategy applied to construct the index can timely process to add or remove unnecessary speech data to meet users’ real-time retrieval requirements. This study proposes an efficient method for retrieving encryption speech, using unsupervised deep hashing and B+ tree dynamic index, which avoid privacy leakage of speech data and enhance the accuracy and efficiency of retrieval. The cloud’s encryption speech library is constructed by using the multi-threaded Dijk-Gentry-Halevi-Vaikuntanathan (DGHV) Fully Homomorphic Encryption (FHE) technique, which encrypts the original speech.… More >

  • Open Access

    ARTICLE

    Secure Content Based Image Retrieval Scheme Based on Deep Hashing and Searchable Encryption

    Zhen Wang, Qiu-yu Zhang*, Ling-tao Meng, Yi-lin Liu

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6161-6184, 2023, DOI:10.32604/cmc.2023.037134 - 29 April 2023

    Abstract To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security, retrieval efficiency, and retrieval accuracy. This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure, searchable encryption scheme. First, a deep learning framework based on residual network and transfer learning model is designed to extract more representative image deep features. Secondly, the central similarity is used to quantify and construct the deep hash sequence of features. The Paillier homomorphic encryption encrypts the deep hash sequence… More >

  • Open Access

    ARTICLE

    Robust Watermarking Algorithm for Medical Images Based on Non-Subsampled Shearlet Transform and Schur Decomposition

    Meng Yang1, Jingbing Li1,2,*, Uzair Aslam Bhatti1,2, Chunyan Shao1, Yen-Wei Chen3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5539-5554, 2023, DOI:10.32604/cmc.2023.036904 - 29 April 2023

    Abstract With the development of digitalization in healthcare, more and more information is delivered and stored in digital form, facilitating people’s lives significantly. In the meanwhile, privacy leakage and security issues come along with it. Zero watermarking can solve this problem well. To protect the security of medical information and improve the algorithm’s robustness, this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform (NSST) and Schur decomposition. Firstly, the low-frequency subband image of the original medical image is obtained by NSST and chunked. Secondly, the Schur decomposition of low-frequency blocks… More >

  • Open Access

    ARTICLE

    TECMH: Transformer-Based Cross-Modal Hashing For Fine-Grained Image-Text Retrieval

    Qiqi Li1, Longfei Ma1, Zheng Jiang1, Mingyong Li1,*, Bo Jin2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3713-3728, 2023, DOI:10.32604/cmc.2023.037463 - 31 March 2023

    Abstract In recent years, cross-modal hash retrieval has become a popular research field because of its advantages of high efficiency and low storage. Cross-modal retrieval technology can be applied to search engines, cross-modal medical processing, etc. The existing main method is to use a multi-label matching paradigm to finish the retrieval tasks. However, such methods do not use fine-grained information in the multi-modal data, which may lead to sub-optimal results. To avoid cross-modal matching turning into label matching, this paper proposes an end-to-end fine-grained cross-modal hash retrieval method, which can focus more on the fine-grained semantic… More >

  • Open Access

    ARTICLE

    ViT2CMH: Vision Transformer Cross-Modal Hashing for Fine-Grained Vision-Text Retrieval

    Mingyong Li, Qiqi Li, Zheng Jiang, Yan Ma*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1401-1414, 2023, DOI:10.32604/csse.2023.034757 - 09 February 2023

    Abstract In recent years, the development of deep learning has further improved hash retrieval technology. Most of the existing hashing methods currently use Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to process image and text information, respectively. This makes images or texts subject to local constraints, and inherent label matching cannot capture fine-grained information, often leading to suboptimal results. Driven by the development of the transformer model, we propose a framework called ViT2CMH mainly based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather than CNNs or RNNs. Specifically, we use a More >

  • Open Access

    ARTICLE

    Hybrid Grey Wolf and Dipper Throated Optimization in Network Intrusion Detection Systems

    Reem Alkanhel1,*, Doaa Sami Khafaga2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Rashid Amin7, Mostafa Abotaleb8, B. M. El-den6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2695-2709, 2023, DOI:10.32604/cmc.2023.033153 - 31 October 2022

    Abstract The Internet of Things (IoT) is a modern approach that enables connection with a wide variety of devices remotely. Due to the resource constraints and open nature of IoT nodes, the routing protocol for low power and lossy (RPL) networks may be vulnerable to several routing attacks. That’s why a network intrusion detection system (NIDS) is needed to guard against routing assaults on RPL-based IoT networks. The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks. Therefore, we propose in this paper… More >

  • Open Access

    ARTICLE

    Cancellable Multi-Biometric Feature Veins Template Generation Based on SHA-3 Hashing

    Salwa M. Serag Eldin1,*, Ahmed Sedik2, Sultan S. Alshamrani3, Ahmed M. Ayoup4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 733-749, 2023, DOI:10.32604/cmc.2023.030789 - 22 September 2022

    Abstract In this paper, a novel cancellable biometrics technique called Multi-Biometric-Feature-Hashing (MBFH) is proposed. The MBFH strategy is utilized to actualize a single direction (non-invertibility) biometric shape. MBFH is a typical model security conspire that is distinguished in the utilization of this protection insurance framework in numerous sorts of biometric feature strategies (retina, palm print, Hand Dorsum, fingerprint). A more robust and accurate multilingual biological structure in expressing human loneliness requires a different format to record clients with inseparable comparisons from individual biographical sources. This may raise worries about their utilization and security when these spread More >

  • Open Access

    ARTICLE

    Enhanced Disease Identification Model for Tea Plant Using Deep Learning

    Santhana Krishnan Jayapal1, Sivakumar Poruran2,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1261-1275, 2023, DOI:10.32604/iasc.2023.026564 - 06 June 2022

    Abstract Tea plant cultivation plays a significant role in the Indian economy. The Tea board of India supports tea farmers to increase tea production by preventing various diseases in Tea Plant. Various climatic factors and other parameters cause these diseases. In this paper, the image retrieval model is developed to identify whether the given input tea leaf image has a disease or is healthy. Automation in image retrieval is a hot topic in the industry as it doesn’t require any form of metadata related to the images for storing or retrieval. Deep Hashing with Integrated Autoencoders… More >

Displaying 1-10 on page 1 of 25. Per Page