Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh

    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685 - 21 August 2024

    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More > Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open Access

    ARTICLE

    Hybrid Strategy of Partitioned and Monolithic Methods for Solving Strongly Coupled Analysis of Inverse and Direct Piezoelectric and Circuit Coupling

    Daisuke Ishihara*, Syunnosuke Nozaki, Tomoya Niho, Naoto Takayama

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1371-1386, 2024, DOI:10.32604/cmes.2024.049694 - 20 May 2024

    Abstract The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters. Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations. Each formulation has its advantages and disadvantages, and the choice depends on the characteristics of each coupled problem. This study proposes a new option: a coupled analysis strategy that combines the best features of the existing formulations, namely, the hybrid partitioned-monolithic method. The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric More >

  • Open Access

    ARTICLE

    A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation

    Hao Qi1, Mohamed Sharaf2, Andres Annuk3, Adrian Ilinca4, Mohamed A. Mohamed5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1387-1404, 2024, DOI:10.32604/cmes.2024.048672 - 20 May 2024

    Abstract Hot dry rock (HDR) is rich in reserve, widely distributed, green, low-carbon, and has broad development potential and prospects. In this paper, a distributionally robust optimization (DRO) scheduling model for a regionally integrated energy system (RIES) considering HDR co-generation is proposed. First, the HDR-enhanced geothermal system (HDR-EGS) is introduced into the RIES. HDR-EGS realizes the thermoelectric decoupling of combined heat and power (CHP) through coordinated operation with the regional power grid and the regional heat grid, which enhances the system wind power (WP) feed-in space. Secondly, peak-hour loads are shifted using price demand response guidance More >

  • Open Access

    REVIEW

    A Review of the Tuned Mass Damper Inerter (TMDI) in Energy Harvesting and Vibration Control: Designs, Analysis and Applications

    Xiaofang Kang1,2,*, Qiwen Huang1, Zongqin Wu1, Jianjun Tang1, Xueqin Jiang1, Shancheng Lei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2361-2398, 2024, DOI:10.32604/cmes.2023.043936 - 11 March 2024

    Abstract Tuned mass damper inerter (TMDI) is a device that couples traditional tuned mass dampers (TMD) with an inertial device. The inertial device produces resistance proportional to the relative acceleration at its two ends through its “inertial” constant. Due to its unique mechanical properties, TMDI has received widespread attention and application in the past twenty years. As different configurations are required in different practical situations, TMDI is still active in the research on vibration control and energy harvesting in structures. This paper provides a comprehensive review of the research status of TMDI. This work first examines… More >

  • Open Access

    ARTICLE

    Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading

    Baofeng Ji1,2,3,*, Ying Wang1,2,3, Weixing Wang1, Shahid Mumtaz4, Charalampos Tsimenidis4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1885-1905, 2024, DOI:10.32604/cmes.2023.030872 - 17 November 2023

    Abstract The utilization of mobile edge computing (MEC) for unmanned aerial vehicle (UAV) communication presents a viable solution for achieving high reliability and low latency communication. This study explores the potential of employing intelligent reflective surfaces (IRS) and UAVs as relay nodes to efficiently offload user computing tasks to the MEC server system model. Specifically, the user node accesses the primary user spectrum, while adhering to the constraint of satisfying the primary user peak interference power. Furthermore, the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes, namely time… More >

  • Open Access

    ARTICLE

    Parameters Optimization and Performance Evaluation of the Tuned Inerter Damper for the Seismic Protection of Adjacent Building Structures

    Xiaofang Kang1,*, Jian Wu1, Xinqi Wang1, Shancheng Lei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 551-593, 2024, DOI:10.32604/cmes.2023.029044 - 22 September 2023

    Abstract In order to improve the seismic performance of adjacent buildings, two types of tuned inerter damper (TID) damping systems for adjacent buildings are proposed, which are composed of springs, inerter devices and dampers in serial or in parallel. The dynamic equations of TID adjacent building damping systems were derived, and the H2 norm criterion was used to optimize and adjust them, so that the system had the optimum damping performance under white noise random excitation. Taking TID frequency ratio and damping ratio as optimization parameters, the optimum analytical solutions of the displacement frequency response of the… More > Graphic Abstract

    Parameters Optimization and Performance Evaluation of the Tuned Inerter Damper for the Seismic Protection of Adjacent Building Structures

  • Open Access

    REVIEW

    Mini Review on PEDOT:PSS as a Conducting Material in Energy Harvesting and Storage Devices Applications

    HYUNGSUB YOONa,*, HEEBO HAa, CHUNGHYEON CHOIa, TAE GWANG YUNb, BYUNGIL HWANGa

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 1-17, 2023, DOI:10.32381/JPM.2023.40.1-2.1

    Abstract Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), one of the conducting polymers, is widely used as a conducting material in various applications. PEDOT:PSS possesses high electrical conductivity, optical transparency in visible light range, good chemical and physical stability in ambient state, etc. Furthermore, PEDOT:PSS offers the advantages of flexibility and possibility of solution-based process, which makes it suitable for use in flexible electronic devices. In this mini review, the applications of PEDOT:PSS as a conductive parts in energy harvesting and storage technologies are discussed and summarized. More >

  • Open Access

    PROCEEDINGS

    Giant Flexoelectric Effect of Polymeric Porous Composite and Its Applications

    Dongze Yan1, Jianxiang Wang2, Lihua Shao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09357

    Abstract Non-uniform strains produce a localized break in the microscopic inverse symmetry of materials, which leads to the electromechanical coupling phenomenon known as flexoelectricity in all dielectric materials. However, the size-dependent flexoelectric effect typically only manifests at small scales. Creating a considerable flexoelectric output at the macroscopic scale remains a bottleneck. Micro- and nano-porous materials own a significant number of randomly distributed microscopic pores and ligamentous structures, which can deform non-uniformly under arbitrary forms of macroscopic loading. Moreover, since the small size effect of flexoelectricity, the entire flexoelectricity of the micro- and nano-porous materials will be… More >

  • Open Access

    ARTICLE

    Wireless Self-Powered Vibration Sensor System for Intelligent Spindle Monitoring

    Lei Yu1, Hongjun Wang1,*, Yubin Yue1, Shucong Liu1, Xiangxiang Mao2, Fengshou Gu3

    Structural Durability & Health Monitoring, Vol.17, No.4, pp. 315-336, 2023, DOI:10.32604/sdhm.2022.024899 - 02 August 2023

    Abstract In recent years, high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year. During the machining process, the high-end equipment failure may have a great impact on the product quality. It is necessary to monitor the status of equipment and to predict fault diagnosis. At present, most of the condition monitoring devices for mechanical equipment have problems of large size, low precision and low energy utilization. A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed. Based on rotor… More >

  • Open Access

    ARTICLE

    Chicken Eggshell as an Innovative Bioflocculant in Harvesting Biofloc for Aquaculture Wastewater Treatment

    Hajjar Hartini Wan Jusoh1, Nor Azman Kasan2,*, Hidayah Manan2, Nurfarahana Mohd Nasir1,3, Fareza Hanis Mohd Yunos1, Sofiah Hamzah1, Ahmad Jusoh1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2321-2332, 2023, DOI:10.32604/jrm.2023.026086 - 13 February 2023

    Abstract Implementation of biofloc technology (BFT) system in aquaculture industry shows high productivity, low feed conversion ratio, and an optimum culture environment. This study was divided into two phases. The first phase involved maintaining the water quality using the optimum carbon-to-nitrogen ratio by manipulating pH in culture water. The second phase examined the performance of harvesting biofloc (remaining phytoplankton and suspended solids in the system) using chicken eggshell powder (CESP). This study showed that pH 7 to 8 were the best biofloc performance with high removal percentage of ammonia (>99%) with a remaining ammonia concentration of… More > Graphic Abstract

    Chicken Eggshell as an Innovative Bioflocculant in Harvesting Biofloc for Aquaculture Wastewater Treatment

Displaying 1-10 on page 1 of 42. Per Page