Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access


    Improved Harris Hawks Optimization Algorithm Based Data Placement Strategy for Integrated Cloud and Edge Computing

    V. Nivethitha*, G. Aghila

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 887-904, 2023, DOI:10.32604/iasc.2023.034247

    Abstract Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows. The individual tasks of a scientific workflow necessitate a diversified number of large states that are spatially located in different datacenters, thereby resulting in huge delays during data transmission. Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets. Therefore, this fixed storage strategy creates huge amount of bottleneck in its storage capacity. At this juncture, integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and… More >

  • Open Access


    Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning

    Latifah Almuqren1, Manar Ahmed Hamza2,*, Abdullah Mohamed3, Amgad Atta Abdelmageed2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4917-4933, 2023, DOI:10.32604/cmc.2023.037738

    Abstract Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of automated face recognition and tracking methods. This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking (HHODL-AFDT) method. The proposed HHODL-AFDT model involves a Faster region based convolution neural network (RCNN)-based face detection model and HHO-based hyperparameter optimization process. The presented optimal Faster RCNN model precisely recognizes the face and… More >

  • Open Access


    Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms

    Siling Feng1, Yinjie Chen1, Mengxing Huang1,2,*, Feng Shu1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4341-4355, 2023, DOI:10.32604/cmc.2023.037154

    Abstract Due to their adaptability, Unmanned Aerial Vehicles (UAVs) play an essential role in the Internet of Things (IoT). Using wireless power transfer (WPT) techniques, an UAV can be supplied with energy while in flight, thereby extending the lifetime of this energy-constrained device. This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously. In this paper, we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks. It is a practical solution to the problem of marine sensor networks that are located far from… More >

  • Open Access


    Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization

    Chandana Gouri Tekkali, Karthika Natarajan*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3171-3187, 2023, DOI:10.32604/cmc.2023.036865

    Abstract Fraud Transactions are haunting the economy of many individuals with several factors across the globe. This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions. This research proposes a novel methodology through three stages. Firstly, Synthetic Minority Oversampling Technique (SMOTE) is applied to get balanced data. Secondly, SMOTE is fed to the nature-inspired Meta Heuristic (MH) algorithm, namely Binary Harris Hawks Optimization (BinHHO), Binary Aquila Optimization (BAO), and Binary Grey Wolf Optimization (BGWO), for feature selection. BinHHO has performed well when compared with the other two. Thirdly, features… More >

  • Open Access


    Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana Murthy3, Padmakar Maddala4, E. Laxmi Lydia5, Seifedine Kadry6,7,8,*, Jungeun Kim9

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1533-1547, 2023, DOI:10.32604/csse.2023.036296

    Abstract Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield. Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns. Weed control has become one of the significant problems in the agricultural sector. In traditional weed control, the entire field is treated uniformly by spraying the soil, a single herbicide dose, weed, and crops in the same way. For more precise farming, robots could accomplish targeted weed treatment if they could specifically find the location of the dispensable plant and identify the… More >

  • Open Access


    Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization

    Basma Mohamed1,*, Linda Mohaisen2, Mohamed Amin1

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2349-2361, 2023, DOI:10.32604/iasc.2023.032930

    Abstract In this paper, we consider the NP-hard problem of finding the minimum connected resolving set of graphs. A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. A resolving set B of G is connected if the subgraph induced by B is a nontrivial connected subgraph of G. The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G. The problem is solved heuristically… More >

  • Open Access


    Multiobjective Economic/Environmental Dispatch Using Harris Hawks Optimization Algorithm

    T. Mahalekshmi1,*, P. Maruthupandi2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 445-460, 2023, DOI:10.32604/iasc.2023.028718

    Abstract The eminence of Economic Dispatch (ED) in power systems is significantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictions. The emission of toxic gases from power plants leads to environmental imbalance and so it is highly mandatory to rectify this issues for obtaining optimal performance in the power systems. In this present study, the Economic and Emission Dispatch (EED) problems are resolved as multi objective Economic Dispatch problems by using Harris Hawk’s Optimization (HHO), which is capable enough to resolve the concerned issue in a wider… More >

  • Open Access


    Bilateral Contract for Load Frequency and Renewable Energy Sources Using Advanced Controller

    Krishan Arora1, Gyanendra Prasad Joshi2, Mahmoud Ragab3,4,5,*, Muhyaddin Rawa6,7,8, Ahmad H. Milyani6,7, Romany F. Mansour9, Eunmok Yang10

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3165-3180, 2022, DOI:10.32604/cmc.2022.026966

    Abstract Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance. However, the collaboration of various manufacturing agencies, autonomous power manufacturers, and buyers have created complex installation processes. The regular active load and inefficiency of best measures among varied associates is a huge hazard. Any sudden load deviation will give rise to immediate amendment in frequency and tie-line power errors. It is essential to deal with every zone’s frequency and tie-line power within permitted confines followed by fluctuations within the load. Therefore, it can be proficient by implementing Load Frequency Control… More >

  • Open Access


    Oppositional Harris Hawks Optimization with Deep Learning-Based Image Captioning

    V. R. Kavitha1, K. Nimala2, A. Beno3, K. C. Ramya4, Seifedine Kadry5, Byeong-Gwon Kang6, Yunyoung Nam7,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 579-593, 2023, DOI:10.32604/csse.2023.024553

    Abstract Image Captioning is an emergent topic of research in the domain of artificial intelligence (AI). It utilizes an integration of Computer Vision (CV) and Natural Language Processing (NLP) for generating the image descriptions. It finds use in several application areas namely recommendation in editing applications, utilization in virtual assistance, etc. The development of NLP and deep learning (DL) models find useful to derive a bridge among the visual details and textual semantics. In this view, this paper introduces an Oppositional Harris Hawks Optimization with Deep Learning based Image Captioning (OHHO-DLIC) technique. The OHHO-DLIC technique involves the design of distinct levels… More >

  • Open Access


    Modified Harris Hawks Optimization Based Test Case Prioritization for Software Testing

    Manar Ahmed Hamza1,*, Abdelzahir Abdelmaboud2, Souad Larabi-Marie-Sainte3, Haya Mesfer Alshahrani4, Mesfer Al Duhayyim5, Hamza Awad Ibrahim6, Mohammed Rizwanullah1, Ishfaq Yaseen1

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1951-1965, 2022, DOI:10.32604/cmc.2022.024692

    Abstract Generally, software testing is considered as a proficient technique to achieve improvement in quality and reliability of the software. But, the quality of test cases has a considerable influence on fault revealing capability of software testing activity. Test Case Prioritization (TCP) remains a challenging issue since prioritizing test cases is unsatisfactory in terms of Average Percentage of Faults Detected (APFD) and time spent upon execution results. TCP is mainly intended to design a collection of test cases that can accomplish early optimization using preferred characteristics. The studies conducted earlier focused on prioritizing the available test cases in accelerating fault detection… More >

Displaying 1-10 on page 1 of 11. Per Page  

Share Link