Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Optimizing AES S-Box Implementation: A SAT-Based Approach with Tower Field Representations

    Jingya Feng1, Ying Zhao2,*, Tao Ye1, Wei Feng3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1491-1507, 2025, DOI:10.32604/cmc.2025.059882 - 26 March 2025

    Abstract The efficient implementation of the Advanced Encryption Standard (AES) is crucial for network data security. This paper presents novel hardware implementations of the AES S-box, a core component, using tower field representations and Boolean Satisfiability (SAT) solvers. Our research makes several significant contributions to the field. Firstly, we have optimized the GF() inversion, achieving a remarkable 31.35% area reduction (15.33 GE) compared to the best known implementations. Secondly, we have enhanced multiplication implementations for transformation matrices using a SAT-method based on local solutions. This approach has yielded notable improvements, such as a 22.22% reduction in More >

  • Open Access

    ARTICLE

    A Secure Hardware Implementation for Elliptic Curve Digital Signature Algorithm

    Mouna Bedoui1,*, Belgacem Bouallegue1,2, Abdelmoty M. Ahmed2, Belgacem Hamdi1,3, Mohsen Machhout1, Mahmoud1, M. Khattab2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2177-2193, 2023, DOI:10.32604/csse.2023.026516 - 01 August 2022

    Abstract Since the end of the 1990s, cryptosystems implemented on smart cards have had to deal with two main categories of attacks: side-channel attacks and fault injection attacks. Countermeasures have been developed and validated against these two types of attacks, taking into account a well-defined attacker model. This work focuses on small vulnerabilities and countermeasures related to the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm. The work done in this paper focuses on protecting the ECDSA algorithm against fault-injection attacks. More precisely, we are interested in the countermeasures of scalar multiplication in the body of the… More >

  • Open Access

    ARTICLE

    An Efficient AES 32-Bit Architecture Resistant to Fault Attacks

    Hassen Mestiri1,2,3,*, Imen Barraj4,5, Abdullah Alsir Mohamed1, Mohsen Machhout3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3667-3683, 2022, DOI:10.32604/cmc.2022.020716 - 27 September 2021

    Abstract The Advanced Encryption Standard cryptographic algorithm, named AES, is implemented in cryptographic circuits to ensure high security level to any system which required confidentiality and secure information exchange. One of the most effective physical attacks against the hardware implementation of AES is fault attacks which can extract secret data. Until now, a several AES fault detection schemes against fault injection attacks have been proposed. In this paper, so as to ensure a high level of security against fault injection attacks, a new efficient fault detection scheme based on the AES architecture modification has been proposed.… More >

Displaying 1-10 on page 1 of 3. Per Page