Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Fireworks Optimization with Deep Learning-Based Arabic Handwritten Characters Recognition Model

    Abdelwahed Motwakel1,*, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Ayman Yafoz4, Mahmoud Othman5, Abu Sarwar Zamani1, Ishfaq Yaseen1, Amgad Atta Abdelmageed1

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1387-1403, 2024, DOI:10.32604/csse.2023.033902 - 13 September 2024

    Abstract Handwritten character recognition becomes one of the challenging research matters. More studies were presented for recognizing letters of various languages. The availability of Arabic handwritten characters databases was confined. Almost a quarter of a billion people worldwide write and speak Arabic. More historical books and files indicate a vital data set for many Arab nations written in Arabic. Recently, Arabic handwritten character recognition (AHCR) has grabbed the attention and has become a difficult topic for pattern recognition and computer vision (CV). Therefore, this study develops fireworks optimization with the deep learning-based AHCR (FWODL-AHCR) technique. The… More >

  • Open Access

    ARTICLE

    KurdSet: A Kurdish Handwritten Characters Recognition Dataset Using Convolutional Neural Network

    Sardar Hasen Ali*, Maiwan Bahjat Abdulrazzaq

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 429-448, 2024, DOI:10.32604/cmc.2024.048356 - 25 April 2024

    Abstract Handwritten character recognition (HCR) involves identifying characters in images, documents, and various sources such as forms surveys, questionnaires, and signatures, and transforming them into a machine-readable format for subsequent processing. Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle. The use of convolutional neural network (CNN) in recent developments has notably advanced HCR, leveraging the ability to extract discriminative features from extensive sets of raw data. Because of the absence of pre-existing datasets in the Kurdish language, we created a Kurdish handwritten dataset called (KurdSet). The dataset consists of Kurdish characters, digits,… More >

  • Open Access

    ARTICLE

    Letter Recognition Reinvented: A Dual Approach with MLP Neural Network and Anomaly Detection

    Nesreen M. Alharbi*, Ahmed Hamza Osman, Arwa A. Mashat, Hasan J. Alyamani

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 175-198, 2024, DOI:10.32604/csse.2023.041044 - 26 January 2024

    Abstract Recent years have witnessed significant advancements in the field of character recognition, thanks to the revolutionary introduction of machine learning techniques. Among various types of character recognition, offline Handwritten Character Recognition (HCR) is comparatively more challenging as it lacks temporal information, such as stroke count and direction, ink pressure, and unexpected handwriting variability. These issues contribute to a poor level of precision, which calls for the adoption of anomaly detection techniques to enhance Optical Character Recognition (OCR) schemes. Previous studies have not researched unsupervised anomaly detection using MLP for handwriting recognition. Therefore, this study proposes… More >

  • Open Access

    ARTICLE

    Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition

    Mohammed Maray1, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Saeed Masoud Alshahrani4,*, Najm Alotaibi5, Sana Alazwari6, Mahmoud Othman7, Manar Ahmed Hamza8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5467-5482, 2023, DOI:10.32604/cmc.2023.033534 - 28 December 2022

    Abstract The recognition of the Arabic characters is a crucial task in computer vision and Natural Language Processing fields. Some major complications in recognizing handwritten texts include distortion and pattern variabilities. So, the feature extraction process is a significant task in NLP models. If the features are automatically selected, it might result in the unavailability of adequate data for accurately forecasting the character classes. But, many features usually create difficulties due to high dimensionality issues. Against this background, the current study develops a Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition (SFODTL-AHCR) model. The… More >

  • Open Access

    ARTICLE

    A Novel Siamese Network for Few/Zero-Shot Handwritten Character Recognition Tasks

    Nagwa Elaraby*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1837-1854, 2023, DOI:10.32604/cmc.2023.032288 - 22 September 2022

    Abstract Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks. It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks (CNNs) for learning a distance function that can map input data from the input space to the feature space. Instead of determining the class of each sample, the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not. The traditional structure for the Siamese architecture was built by forming two… More >

  • Open Access

    ARTICLE

    Handwritten Character Recognition Based on Improved Convolutional Neural Network

    Yu Xue1,2,*, Yiling Tong1, Ziming Yuan1, Shoubao Su2, Adam Slowik3, Sam Toglaw4

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 497-509, 2021, DOI:10.32604/iasc.2021.016884 - 16 June 2021

    Abstract Because of the characteristics of high redundancy, high parallelism and nonlinearity in the handwritten character recognition model, the convolutional neural networks (CNNs) are becoming the first choice to solve these complex problems. The complexity, the types of characters, the character similarity of the handwritten character dataset, and the choice of optimizers all have a great impact on the network model, resulting in low accuracy, high loss, and other problems. In view of the existence of these problems, an improved LeNet-5 model is proposed. Through increasing its convolutional layers and fully connected layers, higher quality features… More >

  • Open Access

    ARTICLE

    An Optimized Deep Residual Network with a Depth Concatenated Block for Handwritten Characters Classification

    Gibrael Abosamra*, Hadi Oqaibi

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1-28, 2021, DOI:10.32604/cmc.2021.015318 - 22 March 2021

    Abstract Even though much advancements have been achieved with regards to the recognition of handwritten characters, researchers still face difficulties with the handwritten character recognition problem, especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset (EMNIST). The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability. Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset. The presence of intra-class variability is mainly due to different shapes written by different writers for… More >

  • Open Access

    ARTICLE

    Pashto Characters Recognition Using Multi-Class Enabled Support Vector Machine

    Sulaiman Khan1, Shah Nazir1, Habib Ullah Khan2,*, Anwar Hussain1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 2831-2844, 2021, DOI:10.32604/cmc.2021.015054 - 01 March 2021

    Abstract During the last two decades significant work has been reported in the field of cursive language’s recognition especially, in the Arabic, the Urdu and the Persian languages. The unavailability of such work in the Pashto language is because of: the absence of a standard database and of significant research work that ultimately acts as a big barrier for the research community. The slight change in the Pashto characters’ shape is an additional challenge for researchers. This paper presents an efficient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using… More >

  • Open Access

    ARTICLE

    Efficient Analysis of Vertical Projection Histogram to Segment Arabic Handwritten Characters

    Mamouni El Mamoun1,*, Zennaki Mahmoud1, Sadouni Kaddour1

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 55-66, 2019, DOI:10.32604/cmc.2019.06444

    Abstract The paper discusses the segmentation of words into characters, which is an essential task in the development process of character recognition systems, as poorly segmented characters will automatically be unrecognized. The segmentation of offline handwritten Arabic text poses a greater challenge because of its cursive nature and different writing styles. In this article, we propose a new approach to segment handwritten Arabic characters using an efficient analysis of the vertical projection histogram. Our approach was tested using a set of handwritten Arabic words from the IFN/ENIT database, and promising results were obtained. More >

  • Open Access

    ARTICLE

    Devanagari Handwriting Grading System Based on Curvature Features

    Munish Kumar1, Simpel Rani Jindal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.2, pp. 195-202, 2017, DOI:10.3970/cmes.2017.113.201

    Abstract Grading of writers in perspective of their handwriting is a challenging task owing to various writing styles of different individuals. This paper presents a framework for grading of Devanagari writers in perspective of their handwriting. This framework of grading can be useful in conducting the handwriting competitions and then deciding the winners on the basis of an automated process. Selecting the set of features is a challenging task for implementing a handwriting grading system of particular language. In this paper, curvature features, namely, parabola curve fitting and power curve fitting have been considered for extracting… More >

Displaying 1-10 on page 1 of 11. Per Page