Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Dynamic Hand Gesture-Based Person Identification Using Leap Motion and Machine Learning Approaches

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Md. Maniruzzaman1, Taiki Watanabe1, Issei Jozume1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1205-1222, 2024, DOI:10.32604/cmc.2024.046954 - 25 April 2024

    Abstract Person identification is one of the most vital tasks for network security. People are more concerned about their security due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprints and faces have been widely used for person identification, which has the risk of information leakage as a result of reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiable pattern, which will not be reproducible falsely by capturing psychological and behavioral information of a person using vision and sensor-based techniques. In existing studies, most… More >

  • Open Access

    ARTICLE

    Virtual Keyboard: A Real-Time Hand Gesture Recognition-Based Character Input System Using LSTM and Mediapipe Holistic

    Bijon Mallik1, Md Abdur Rahim1, Abu Saleh Musa Miah2, Keun Soo Yun3,*, Jungpil Shin2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 555-570, 2024, DOI:10.32604/csse.2023.045981 - 19 March 2024

    Abstract In the digital age, non-touch communication technologies are reshaping human-device interactions and raising security concerns. A major challenge in current technology is the misinterpretation of gestures by sensors and cameras, often caused by environmental factors. This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions. Our study presents a novel virtual keyboard allowing character input via distinct hand gestures, focusing on two key aspects: hand gesture recognition and character input mechanisms. We developed a novel model with LSTM and fully connected layers for enhanced sequential data… More >

  • Open Access

    ARTICLE

    GestureID: Gesture-Based User Authentication on Smart Devices Using Acoustic Sensing

    Jizhao Liu1,2, Jiang Hui1,2,*, Zhaofa Wang1,2

    Sound & Vibration, Vol.58, pp. 151-169, 2024, DOI:10.32604/sv.2024.045193 - 19 March 2024

    Abstract User authentication on smart devices is crucial to protecting user privacy and device security. Due to the development of emerging attacks, existing physiological feature-based authentication methods, such as fingerprint, iris, and face recognition are vulnerable to forgery and attacks. In this paper, GestureID, a system that utilizes acoustic sensing technology to distinguish hand features among users, is proposed. It involves using a speaker to send acoustic signals and a microphone to receive the echoes affected by the reflection of the hand movements of the users. To ensure system accuracy and effectively distinguish users’ gestures, a… More >

  • Open Access

    ARTICLE

    Japanese Sign Language Recognition by Combining Joint Skeleton-Based Handcrafted and Pixel-Based Deep Learning Features with Machine Learning Classification

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Abu Saleh Musa Miah1, Kota Suzuki1, Koki Hirooka1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2605-2625, 2024, DOI:10.32604/cmes.2023.046334 - 11 March 2024

    Abstract Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities. In Japan, approximately 360,000 individuals with hearing and speech disabilities rely on Japanese Sign Language (JSL) for communication. However, existing JSL recognition systems have faced significant performance limitations due to inherent complexities. In response to these challenges, we present a novel JSL recognition system that employs a strategic fusion approach, combining joint skeleton-based handcrafted features and pixel-based deep learning features. Our system incorporates two distinct streams: the first stream extracts crucial handcrafted features, emphasizing the capture of hand and body… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Hand Gesture Recognition: Applications in Deaf Communication and Healthcare

    Khursheed Aurangzeb1, Khalid Javeed2, Musaed Alhussein1, Imad Rida3, Syed Irtaza Haider1, Anubha Parashar4,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 127-144, 2024, DOI:10.32604/cmc.2023.042886 - 30 January 2024

    Abstract Hand gestures have been used as a significant mode of communication since the advent of human civilization. By facilitating human-computer interaction (HCI), hand gesture recognition (HGRoc) technology is crucial for seamless and error-free HCI. HGRoc technology is pivotal in healthcare and communication for the deaf community. Despite significant advancements in computer vision-based gesture recognition for language understanding, two considerable challenges persist in this field: (a) limited and common gestures are considered, (b) processing multiple channels of information across a network takes huge computational time during discriminative feature extraction. Therefore, a novel hand vision-based convolutional neural network… More >

  • Open Access

    ARTICLE

    Appearance Based Dynamic Hand Gesture Recognition Using 3D Separable Convolutional Neural Network

    Muhammad Rizwan1,*, Sana Ul Haq1,*, Noor Gul1,2, Muhammad Asif1, Syed Muslim Shah3, Tariqullah Jan4, Naveed Ahmad5

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1213-1247, 2023, DOI:10.32604/cmc.2023.038211 - 08 June 2023

    Abstract Appearance-based dynamic Hand Gesture Recognition (HGR) remains a prominent area of research in Human-Computer Interaction (HCI). Numerous environmental and computational constraints limit its real-time deployment. In addition, the performance of a model decreases as the subject’s distance from the camera increases. This study proposes a 3D separable Convolutional Neural Network (CNN), considering the model’s computational complexity and recognition accuracy. The 20BN-Jester dataset was used to train the model for six gesture classes. After achieving the best offline recognition accuracy of 94.39%, the model was deployed in real-time while considering the subject’s attention, the instant of… More >

  • Open Access

    ARTICLE

    An Efficient and Robust Hand Gesture Recognition System of Sign Language Employing Finetuned Inception-V3 and Efficientnet-B0 Network

    Adnan Hussain1, Sareer Ul Amin2, Muhammad Fayaz3, Sanghyun Seo4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3509-3525, 2023, DOI:10.32604/csse.2023.037258 - 03 April 2023

    Abstract Hand Gesture Recognition (HGR) is a promising research area with an extensive range of applications, such as surgery, video game techniques, and sign language translation, where sign language is a complicated structured form of hand gestures. The fundamental building blocks of structured expressions in sign language are the arrangement of the fingers, the orientation of the hand, and the hand’s position concerning the body. The importance of HGR has increased due to the increasing number of touchless applications and the rapid growth of the hearing-impaired population. Therefore, real-time HGR is one of the most effective… More >

  • Open Access

    ARTICLE

    Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning

    Fadwa Alrowais1, Radwa Marzouk2,3, Fahd N. Al-Wesabi4,*, Anwer Mustafa Hilal5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3325-3342, 2023, DOI:10.32604/iasc.2023.036354 - 15 March 2023

    Abstract Sign language recognition can be treated as one of the efficient solutions for disabled people to communicate with others. It helps them to convey the required data by the use of sign language with no issues. The latest developments in computer vision and image processing techniques can be accurately utilized for the sign recognition process by disabled people. American Sign Language (ASL) detection was challenging because of the enhancing intraclass similarity and higher complexity. This article develops a new Bayesian Optimization with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication (BODL-HGRSLC) for Disabled People.… More >

  • Open Access

    ARTICLE

    A Novel Machine Learning–Based Hand Gesture Recognition Using HCI on IoT Assisted Cloud Platform

    Saurabh Adhikari1, Tushar Kanti Gangopadhayay1, Souvik Pal2,3, D. Akila4, Mamoona Humayun5, Majed Alfayad6, N. Z. Jhanjhi7,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2123-2140, 2023, DOI:10.32604/csse.2023.034431 - 09 February 2023

    Abstract Machine learning is a technique for analyzing data that aids the construction of mathematical models. Because of the growth of the Internet of Things (IoT) and wearable sensor devices, gesture interfaces are becoming a more natural and expedient human-machine interaction method. This type of artificial intelligence that requires minimal or no direct human intervention in decision-making is predicated on the ability of intelligent systems to self-train and detect patterns. The rise of touch-free applications and the number of deaf people have increased the significance of hand gesture recognition. Potential applications of hand gesture recognition research… More >

  • Open Access

    ARTICLE

    Home Automation-Based Health Assessment Along Gesture Recognition via Inertial Sensors

    Hammad Rustam1, Muhammad Muneeb1, Suliman A. Alsuhibany2, Yazeed Yasin Ghadi3, Tamara Al Shloul4, Ahmad Jalal1, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2331-2346, 2023, DOI:10.32604/cmc.2023.028712 - 06 February 2023

    Abstract Hand gesture recognition (HGR) is used in a numerous applications, including medical health-care, industrial purpose and sports detection. We have developed a real-time hand gesture recognition system using inertial sensors for the smart home application. Developing such a model facilitates the medical health field (elders or disabled ones). Home automation has also been proven to be a tremendous benefit for the elderly and disabled. Residents are admitted to smart homes for comfort, luxury, improved quality of life, and protection against intrusion and burglars. This paper proposes a novel system that uses principal component analysis, linear More >

Displaying 1-10 on page 1 of 16. Per Page