Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    OPT-BAG Model for Predicting Student Employability

    Minh-Thanh Vo1, Trang Nguyen2, Tuong Le3,4,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1555-1568, 2023, DOI:10.32604/cmc.2023.039334 - 30 August 2023

    Abstract The use of machine learning to predict student employability is important in order to analyse a student’s capability to get a job. Based on the results of this type of analysis, university managers can improve the employability of their students, which can help in attracting students in the future. In addition, learners can focus on the essential skills identified through this analysis during their studies, to increase their employability. An effective method called OPT-BAG (OPTimisation of BAGging classifiers) was therefore developed to model the problem of predicting the employability of students. This model can help… More >

  • Open Access

    ARTICLE

    Research on Low Voltage Series Arc Fault Prediction Method Based on Multidimensional Time-Frequency Domain Characteristics

    Feiyan Zhou1,*, Hui Yin1, Chen Luo2, Haixin Tong2, Kun Yu2, Zewen Li2, Xiangjun Zeng2

    Energy Engineering, Vol.120, No.9, pp. 1979-1990, 2023, DOI:10.32604/ee.2023.029480 - 03 August 2023

    Abstract The load types in low-voltage distribution systems are diverse. Some loads have current signals that are similar to series fault arcs, making it difficult to effectively detect fault arcs during their occurrence and sustained combustion, which can easily lead to serious electrical fire accidents. To address this issue, this paper establishes a fault arc prototype experimental platform, selects multiple commonly used loads for fault arc experiments, and collects data in both normal and fault states. By analyzing waveform characteristics and selecting fault discrimination feature indicators, corresponding feature values are extracted for qualitative analysis to explore… More > Graphic Abstract

    Research on Low Voltage Series Arc Fault Prediction Method Based on Multidimensional Time-Frequency Domain Characteristics

  • Open Access

    ARTICLE

    Facial Expression Recognition Model Depending on Optimized Support Vector Machine

    Amel Ali Alhussan1, Fatma M. Talaat2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Doaa Sami Khafaga1,*, Mona Alnaggar7

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 499-515, 2023, DOI:10.32604/cmc.2023.039368 - 08 June 2023

    Abstract In computer vision, emotion recognition using facial expression images is considered an important research issue. Deep learning advances in recent years have aided in attaining improved results in this issue. According to recent studies, multiple facial expressions may be included in facial photographs representing a particular type of emotion. It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition. The main contribution of this paper is to propose a facial expression recognition model (FERM) depending on an optimized Support Vector Machine (SVM). To test the… More >

  • Open Access

    ARTICLE

    Forecasting the Municipal Solid Waste Using GSO-XGBoost Model

    Vaishnavi Jayaraman1, Arun Raj Lakshminarayanan1,*, Saravanan Parthasarathy1, A. Suganthy2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 301-320, 2023, DOI:10.32604/iasc.2023.037823 - 29 April 2023

    Abstract Waste production rises in tandem with population growth and increased utilization. The indecorous disposal of waste paves the way for huge disaster named as climate change. The National Environment Agency (NEA) of Singapore oversees the sustainable management of waste across the country. The three main contributors to the solid waste of Singapore are paper and cardboard (P&C), plastic, and food scraps. Besides, they have a negligible rate of recycling. In this study, Machine Learning techniques were utilized to forecast the amount of garbage also known as waste audits. The waste audit would aid the authorities… More >

  • Open Access

    ARTICLE

    A Robust Tuned Random Forest Classifier Using Randomized Grid Search to Predict Coronary Artery Diseases

    Sameh Abd El-Ghany1,2, A. A. Abd El-Aziz1,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4633-4648, 2023, DOI:10.32604/cmc.2023.035779 - 31 March 2023

    Abstract Coronary artery disease (CAD) is one of the most authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue. The breakdown of coronary cardiovascular disease is one of the principal sources of death all over the world. Cardiovascular deterioration is a challenge, especially in youthful and rural countries where there is an absence of human-trained professionals. Since heart diseases happen without apparent signs, high-level detection is desirable. This paper proposed a robust and tuned random forest model using the randomized grid search technique to predict CAD. The proposed framework increases the ability of CAD… More >

  • Open Access

    ARTICLE

    Hyper-Parameter Optimization of Semi-Supervised GANs Based-Sine Cosine Algorithm for Multimedia Datasets

    Anas Al-Ragehi1, Said Jadid Abdulkadir1,2,*, Amgad Muneer1,2, Safwan Sadeq3, Qasem Al-Tashi4,5

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 2169-2186, 2022, DOI:10.32604/cmc.2022.027885 - 18 May 2022

    Abstract Generative Adversarial Networks (GANs) are neural networks that allow models to learn deep representations without requiring a large amount of training data. Semi-Supervised GAN Classifiers are a recent innovation in GANs, where GANs are used to classify generated images into real and fake and multiple classes, similar to a general multi-class classifier. However, GANs have a sophisticated design that can be challenging to train. This is because obtaining the proper set of parameters for all models-generator, discriminator, and classifier is complex. As a result, training a single GAN model for different datasets may not produce… More >

  • Open Access

    ARTICLE

    Grid Search for Predicting Coronary Heart Disease by Tuning Hyper-Parameters

    S. Prabu1,*, B. Thiyaneswaran2, M. Sujatha3, C. Nalini4, Sujatha Rajkumar5

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 737-749, 2022, DOI:10.32604/csse.2022.022739 - 20 April 2022

    Abstract Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years. Coronary cardiovascular (CHD) is a kind of heart and blood vascular disease. Predicting this sort of cardiac illness leads to more precise decisions for cardiac disorders. Implementing Grid Search Optimization (GSO) machine training models is therefore a useful way to forecast the sickness as soon as possible. The state-of-the-art work is the tuning of the hyperparameter together with the selection of the feature by utilizing the model search to minimize the false-negative rate. Three models with a cross-validation approach do the… More >

  • Open Access

    ARTICLE

    Performance Estimation of Machine Learning Algorithms in the Factor Analysis of COVID-19 Dataset

    Ashutosh Kumar Dubey1,*, Sushil Narang1, Abhishek Kumar1, Satya Murthy Sasubilli2, Vicente García-Díaz3

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1921-1936, 2021, DOI:10.32604/cmc.2020.012151 - 26 November 2020

    Abstract Novel Coronavirus Disease (COVID-19) is a communicable disease that originated during December 2019, when China officially informed the World Health Organization (WHO) regarding the constellation of cases of the disease in the city of Wuhan. Subsequently, the disease started spreading to the rest of the world. Until this point in time, no specific vaccine or medicine is available for the prevention and cure of the disease. Several research works are being carried out in the fields of medicinal and pharmaceutical sciences aided by data analytics and machine learning in the direction of treatment and early… More >

  • Open Access

    ARTICLE

    An Early Stopping-Based Artificial Neural Network Model for Atmospheric Corrosion Prediction of Carbon Steel

    Phyu Hnin Thike1, 2, Zhaoyang Zhao1, Peng Liu1, Feihu Bao1, Ying Jin1, Peng Shi1, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2091-2109, 2020, DOI:10.32604/cmc.2020.011608 - 16 September 2020

    Abstract The optimization of network topologies to retain the generalization ability by deciding when to stop overtraining an artificial neural network (ANN) is an existing vital challenge in ANN prediction works. The larger the dataset the ANN is trained with, the better generalization the prediction can give. In this paper, a large dataset of atmospheric corrosion data of carbon steel compiled from several resources is used to train and test a multilayer backpropagation ANN model as well as two conventional corrosion prediction models (linear and Klinesmith models). Unlike previous related works, a grid searchbased hyperparameter tuning… More >

  • Open Access

    ARTICLE

    SVM Model Selection Using PSO for Learning Handwritten Arabic Characters

    Mamouni El Mamoun1,*, Zennaki Mahmoud1, Sadouni Kaddour1

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 995-1008, 2019, DOI:10.32604/cmc.2019.08081

    Abstract Using Support Vector Machine (SVM) requires the selection of several parameters such as multi-class strategy type (one-against-all or one-against-one), the regularization parameter C, kernel function and their parameters. The choice of these parameters has a great influence on the performance of the final classifier. This paper considers the grid search method and the particle swarm optimization (PSO) technique that have allowed to quickly select and scan a large space of SVM parameters. A comparative study of the SVM models is also presented to examine the convergence speed and the results of each model. SVM is More >

Displaying 1-10 on page 1 of 11. Per Page