Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia

    Shehab Abdulhabib Alzaeemi1, Saratha Sathasivam2,*, Majid Khan bin Majahar Ali2, K. G. Tay1, Muraly Velavan3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1471-1491, 2023, DOI:10.32604/csse.2023.037366 - 28 July 2023

    Abstract Rubber producers, consumers, traders, and those who are involved in the rubber industry face major risks of rubber price fluctuations. As a result, decision-makers are required to make an accurate estimation of the price of rubber. This paper aims to propose hybrid intelligent models, which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data, spanning from January 2016 to March 2021. The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining (RBFNN-kSAT). These algorithms, including Grey Wolf… More >

  • Open Access

    ARTICLE

    Bio-inspired Hybrid Feature Selection Model for Intrusion Detection

    Adel Hamdan Mohammad1,*, Tariq Alwada’n2, Omar Almomani3, Sami Smadi3, Nidhal ElOmari4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 133-150, 2022, DOI:10.32604/cmc.2022.027475 - 18 May 2022

    Abstract Intrusion detection is a serious and complex problem. Undoubtedly due to a large number of attacks around the world, the concept of intrusion detection has become very important. This research proposes a multilayer bio-inspired feature selection model for intrusion detection using an optimized genetic algorithm. Furthermore, the proposed multilayer model consists of two layers (layers 1 and 2). At layer 1, three algorithms are used for the feature selection. The algorithms used are Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and Firefly Optimization Algorithm (FFA). At the end of layer 1, a priority value… More >

  • Open Access

    ARTICLE

    Swarm-Based Extreme Learning Machine Models for Global Optimization

    Mustafa Abdul Salam1,*, Ahmad Taher Azar2, Rana Hussien2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6339-6363, 2022, DOI:10.32604/cmc.2022.020583 - 11 October 2021

    Abstract Extreme Learning Machine (ELM) is popular in batch learning, sequential learning, and progressive learning, due to its speed, easy integration, and generalization ability. While, Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence, high time and space complexity. In ELM, the hidden layer typically necessitates a huge number of nodes. Furthermore, there is no certainty that the arrangement of weights and biases within the hidden layer is optimal. To solve this problem, the traditional ELM has been hybridized with swarm intelligence optimization techniques. This paper displays five proposed hybrid Algorithms… More >

  • Open Access

    ARTICLE

    Multi-Objective Grey Wolf Optimization Algorithm for Solving Real-World BLDC Motor Design Problem

    M. Premkumar1, Pradeep Jangir2, B. Santhosh Kumar3, Mohammad A. Alqudah4, Kottakkaran Sooppy Nisar5,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2435-2452, 2022, DOI:10.32604/cmc.2022.016488 - 27 September 2021

    Abstract The first step in the design phase of the Brushless Direct Current (BLDC) motor is the formulation of the mathematical framework and is often used due to its analytical structure. Therefore, the BLDC motor design problem is considered to be an optimization problem. In this paper, the analytical model of the BLDC motor is presented, and it is considered to be a basis for emphasizing the optimization methods. The analytical model used for the experimentation has 78 non-linear equations, two objective functions, five design variables, and six non-linear constraints, so the BLDC motor design problem… More >

  • Open Access

    ARTICLE

    Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm

    Xianghui Lu1, Junliang Fan2, Lifeng Wu1,*, Jianhua Dong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 699-723, 2020, DOI:10.32604/cmes.2020.011004 - 12 October 2020

    Abstract It is important for regional water resources management to know the agricultural water consumption information several months in advance. Forecasting reference evapotranspiration (ET0) in the next few months is important for irrigation and reservoir management. Studies on forecasting of multiple-month ahead ET0 using machine learning models have not been reported yet. Besides, machine learning models such as the XGBoost model has multiple parameters that need to be tuned, and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution. This study investigated the performance of the hybrid extreme… More >

Displaying 1-10 on page 1 of 5. Per Page