Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Multitarget Flexible Grasping Detection Method for Robots in Unstructured Environments

    Qingsong Fan, Qijie Rao, Haisong Huang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1825-1848, 2023, DOI:10.32604/cmes.2023.028369 - 26 June 2023

    Abstract In present-day industrial settings, where robot arms perform tasks in an unstructured environment, there may exist numerous objects of various shapes scattered in random positions, making it challenging for a robot arm to precisely attain the ideal pose to grasp the object. To solve this problem, a multistage robotic arm flexible grasp detection method based on deep learning is proposed. This method first improves the Faster RCNN target detection model, which significantly improves the detection ability of the model for multiscale grasped objects in unstructured scenes. Then, a Squeeze-and-Excitation module is introduced to design a… More >

  • Open Access

    ARTICLE

    T_GRASP: Optimization Algorithm of Ship Avoiding Typhoon Route

    Yingxian Huang, Xueyan Ding, Yanan Zhang, Leiming Yan*

    Journal of Quantum Computing, Vol.4, No.2, pp. 85-95, 2022, DOI:10.32604/jqc.2022.031436 - 16 May 2023

    Abstract A GRASP-based algorithm called T_GRASP for avoiding typhoon route optimization is suggested to increase the security and effectiveness of ship navigation. One of the worst natural calamities that can disrupt a ship’s navigation and result in numerous safety mishaps is a typhoon. Currently, the captains manually review the collected weather data and steer clear of typhoons using their navigational expertise. The distribution of heavy winds and waves produced by the typhoon also changes dynamically as a result of the surrounding large-scale air pressure distribution, which significantly enhances the challenge of the captain’s preparation for avoiding… More >

  • Open Access

    ARTICLE

    A Multi-Scale Grasp Detector Based on Fully Matching Model

    Xinheng Yuan, Hao Yu, Houlin Zhang, Li Zheng, Erbao Dong*, Heng’an Wu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 281-301, 2022, DOI:10.32604/cmes.2022.021383 - 21 July 2022

    Abstract Robotic grasping is an essential problem at both the household and industrial levels, and unstructured objects have always been difficult for grippers. Parallel-plate grippers and algorithms, focusing on partial information of objects, are one of the widely used approaches. However, most works predict single-size grasp rectangles for fixed cameras and gripper sizes. In this paper, a multi-scale grasp detector is proposed to predict grasp rectangles with different sizes on RGB-D or RGB images in real-time for hand-eye cameras and various parallel-plate grippers. The detector extracts feature maps of multiple scales and conducts predictions on each… More >

  • Open Access

    ARTICLE

    Enhance Egocentric Grasp Recognition Based Flex Sensor Under Low Illumination

    Chana Chansri, Jakkree Srinonchat*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4377-4389, 2022, DOI:10.32604/cmc.2022.024026 - 14 January 2022

    Abstract Egocentric recognition is exciting computer vision research by acquiring images and video from the first-person overview. However, an image becomes noisy and dark under low illumination conditions, making subsequent hand detection tasks difficult. Thus, image enhancement is necessary to make buried detail more visible. This article addresses the challenge of egocentric hand grasp recognition in low light conditions by utilizing the flex sensor and image enhancement algorithm based on adaptive gamma correction with weighting distribution. Initially, a flex sensor is installed to the thumb for object manipulation. The thumb placement that holds in a different More >

  • Open Access

    ARTICLE

    Deformation Expression of Soft Tissue Based on BP Neural Network

    Xiaorui Zhang1,2,*, Xun Sun1, Wei Sun2, Tong Xu1, Pengpai Wang1, Sunil Kumar Jha3

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1041-1053, 2022, DOI:10.32604/iasc.2022.016543 - 17 November 2021

    Abstract This paper proposes a soft tissue grasping deformation model, where BP neural network optimized by the genetic algorithm is used to realize the real-time and accurate interaction of soft tissue grasping during virtual surgery. In the model, the soft tissue epidermis is divided into meshes, and the meshes generate displacements under the action of tension. The relationship between the tension and displacement of the mesh is determined by the proposed cylindrical spiral spring model. The optimized BP neural network is trained based on the sample data of the mesh point and vertical tension, so as More >

  • Open Access

    ARTICLE

    HGG-CNN: The Generation of the Optimal Robotic Grasp Pose Based on Vision

    Shiyin Qiu1,*, David Lodder2, Feifan Du2

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1517-1529, 2020, DOI:10.32604/iasc.2020.012144 - 24 December 2020

    Abstract Robotic grasping is an important issue in the field of robot control. In order to solve the problem of optimal grasping pose of the robotic arm, based on the Generative Grasping Convolutional Neural Network (GG-CNN), a new convolutional neural network called Hybrid Generative Grasping Convolutional Neural Network (HGG-CNN) is proposed by combining three small network structures called Inception Block, Dense Block and SELayer. This new type of convolutional neural network structure can improve the accuracy rate of grasping pose based on the GG-CNN network, thereby improving the success rate of grasping. In addition, the HGG-CNN More >

  • Open Access

    ARTICLE

    Hybrid Clustering Algorithms with GRASP to Construct an Initial Solution for the MVPPDP

    Abeer I. Alhujaylan1, 2, *, Manar I. Hosny1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1025-1051, 2020, DOI:10.32604/cmc.2020.08742

    Abstract Mobile commerce (m-commerce) contributes to increasing the popularity of electronic commerce (e-commerce), allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time. As demand for e-commerce increases tremendously, the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction. One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem (MVPPDP), where a selected set of pickup and delivery customers need to be served within certain allowed trip time. In this paper, we proposed hybrid clustering algorithms More >

  • Open Access

    ABSTRACT

    Modeling and Robot Grasping of Deformable Shell-like and Planar Objects

    Yan-Bin Jia

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.2, pp. 43-44, 2011, DOI:10.3970/icces.2011.016.043

    Abstract The robot hand applying force on a deformable object will result in a changing wrench space due to the varying shape and normal of the contact area. Design and analysis of a manipulation strategy thus depend on reliable modeling of the object's deformations as actions are performed. The first part of this talk is concerned with modeling of shell-like objects grasped by a robot hand. We present a formulation of extensional, shearing, and bending strains in terms of geometric invariants including the principal curvatures and vectors, and their related directional and covariant derivatives. A computational… More >

Displaying 1-10 on page 1 of 8. Per Page