Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Mechanistic Investigation of Capacity Degradation in Lithium Iron Phosphate Batteries under Low Temperature Cycling Conditions

    Jianwei Sun, Shuqing Guo*, Shikai Li

    Energy Engineering, Vol.122, No.9, pp. 3625-3646, 2025, DOI:10.32604/ee.2025.067159 - 26 August 2025

    Abstract Since lithium-ion batteries have been put into use, the recession of work cycle efficiency at low temperatures has received widespread attention. In this paper, we investigated the effect of low temperature (−5°C, 0°C, 5°C) environments on the performance of lithium-ion batteries, which are well-known for their excellent discharge performance, cycle life, and safety. However, lithium-ion batteries exhibit significant capacity degradation at low temperatures, especially at 0°C, losing availability after only 10 cycles. Therefore, we conducted cycle degradation tests at 1C discharge and 100% charge-discharge conditions. In this paper, we analyzed the surface morphology, structure, and More > Graphic Abstract

    Mechanistic Investigation of Capacity Degradation in Lithium Iron Phosphate Batteries under Low Temperature Cycling Conditions

  • Open Access

    ARTICLE

    Friction and wear performance of electrospark deposited Ni/C-MoS2 self-lubricating coating

    F. L. Konga,b, L. Zhangc, W. J. Zhaod, D. S. Zhengb, T. J. Suib, G. L. Zhua, C. A. Guoa,*

    Chalcogenide Letters, Vol.21, No.8, pp. 665-674, 2024, DOI:10.15251/CL.2024.218.665

    Abstract A Ni/C-MoS2 coating was electrospark deposited by using an electrode made of sinered Ni-C-MoS2 composite on a CrNi3MoVA steel substrate, and its nano-mechanical properties and tribological properties were obtained by utilizing nano-indenter and friction-abrasion testing machine. The results showed that the phase constitution of the as-deposited Ni/C-MoS2 coating mainly includes graphite, MoS2, γ-Ni, MoO2, NixS and MoC. Compared with the CrNi3MoVA steel and Ni/MoS2 coating, the Ni/C-MoS2 coating exhibits better tribological properties due to the matrix strengthened by MoO2 and MoC, and the synergistic lubrication effect of graphite and MoS2 in the Ni/C-MoS2 coating. More >

  • Open Access

    ARTICLE

    Graphite/Polyvinyl Alcohol Hydrogels with Fluoride and Iodine Deionization for Solar-Driven Interfacial Evaporation

    Ziyang Qiu1,2, Hanjun Yang1,2,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 329-340, 2024, DOI:10.32604/jpm.2024.057953 - 16 December 2024

    Abstract Hydrogels are emerging as promising candidates for solar-driven interfacial evaporation in water purification. Our research introduces a graphite polyvinyl alcohol hydrogel (GPVA) evaporator designed as a photothermal conversion interface, showcasing high performance with an evaporation rate of 2.43 kg m−2 h−1 and an efficiency of 91.9% under solar irradiance of 1 kW m−2. The layered graphite structure of the GPVA hydrogel enhances its ion and dye adsorption capabilities, effectively removing fluoride, iodine, and other contaminants from water. In cyclic evaporation tests, the GPVA hydrogel evaporator demonstrated remarkable stability and long-term durability, maintaining an evaporation rate of 2.43 More >

  • Open Access

    PROCEEDINGS

    Static and Dynamic Fracture Toughness of Graphite Materials with Varying Grain Sizes

    Sihui Tong1, Boyuan Cao1, Dongqing Tian2, Qinwei Ma1, Guangyan Liu1,*, Li Shi2, Libin Sun2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010870

    Abstract Graphite materials serve critical roles as moderators, reflectors and core structural components in high-temperature gas-cooled nuclear reactors. These materials may experience a variety of loads during the reactor operation, including thermal, radiation, fatigue and dynamic loads, potentially leading to crack initiation and propagation. Consequently, it is imperative to investigate the fracture properties of graphite materials. Currently, there exists a dearth of comprehensive studies on the fracture toughness of graphite materials with varying grain sizes, especially regarding dynamic fracture toughness. This study introduces a novel approach utilizing a digital-image-correlation-based virtual extensometer to analyze crack propagation in… More >

  • Open Access

    ARTICLE

    Protective Graphite Coating for Two-Dimensional Carbon/Carbon Composites

    Wei Shi1,2, Zhengyi Li1, Xiaobing Xu1, Yingshui Yu1, Xiaofei Ding1, Heng Ju1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 97-108, 2024, DOI:10.32604/fdmp.2023.029028 - 08 November 2023

    Abstract Two-dimensional carbon/carbon (2D C/C) composites are a special class of carbon/carbon composites, generally obtained by combining resin-impregnated carbon fiber clothes, which are then cured and carbonized. This study deals with the preparation of a protective coating for these materials. This coating, based on graphite, was prepared by the slurry method. The effect of graphite and phenolic resin powders with different weight ratios was examined. The results have shown that the coating slurry can fill the pores and cracks of the composite surface, thereby densifying the surface layer of the material. With the increase of the… More >

  • Open Access

    ARTICLE

    Study of Galvanic Charging-Discharging Properties of Graphene Nanoplatelets Incorporated Epoxy-Carbon Fabric Composites

    HADIMANI SHIVAKUMAR1, GURUMURTHY G. D.1, BOMMEGOWDA K. B.2, S. PARAMESHWARA3

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 93-103, 2023, DOI:10.32381/JPM.2023.40.1-2.8

    Abstract Polymer composites are increasing in demand in energy storage applications including in the electronic as well as electrical industries due to the ease of processing of these materials with associated advantages like light weight, corrosion resistance, and high mechanical strength. In this investigation, efforts are made to enhance the charging and discharging properties of epoxy/carbon fabric composite by the addition of graphene nanoplatelets (GNPs) into the epoxy/ carbon matrix. The performance of the composites with graphene platelets of 0.5 to 5 wt. % in epoxy were characterized and 1wt.% percolation threshold was observed poor performance… More >

  • Open Access

    ARTICLE

    A Bidimensional Finite Element Study of Crack Propagation in Austempered Ductile Iron

    Gustavo von Zeska de França, Roberto Luís de Assumpção, Marco Antonio Luersen*, Carlos Henrique da Silva

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1411-1424, 2023, DOI:10.32604/cmc.2023.043811 - 29 November 2023

    Abstract Austempered ductile iron (ADI) is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength, fatigue resistance, and wear resistance compared to other cast irons. The amount and size of the nodules can be controlled by the chemical composition and austenitizing temperature. As the nodules have lower stiffness than the matrix and can act as stress concentrators, they influence crack propagation. However, the crack propagation mechanism in ADI is not yet fully understood. In this study, we describe a numerical investigation of crack propagation… More >

  • Open Access

    PROCEEDINGS

    A Data-Fusion Method for Uncertainty Quantification of Mechanical Property of Bi-Modulus Materials: An Example of Graphite

    Liang Zhang1,*, Zigang He1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09713

    Abstract The different elastic properties of tension and compression are obvious in many engineering materials, especially new materials. Materials with this characteristic, such as graphite, ceramics, and composite materials, are called bi-modulus materials. Their mechanical properties such as Young’s modulus have randomness in tension and compression due to different porosity, microstructure, etc. To calibrate the mechanical properties of bi-modulus materials by bridging FEM simulation results and scarce experimental data, the paper presents a data-fusion computational method. The FEM simulation is implemented based on Parametric Variational Principle (PVP), while the experimental result is obtained by Digital Image… More >

  • Open Access

    PROCEEDINGS

    3D Analysis of Effect of Graphite Morphology on Thermomechanical Behaviour of CGI

    Minghua Cao1,*, Konstantinos P. Baxevanakis1, Vadim V. Silberschmidt1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09086

    Abstract Compacted graphite iron (CGI) was attractive as an important material for the industry since its introduction in the last century. Thanks to its high strength, great wear resistance and thermal conductivity, CGI became extensively applied in the automotive industry as engine parts: brake drums, cylinder heads and exhaust manifolds. As a metal-matrix composite, CGI contains two microstructural phases: graphite inclusions and a metallic matrix. The main fracture mechanism of CGI under high-temperature service conditions at macroscale is linked to graphite-matrix (interfacial) debonding, formation of microcracks and their networks, and final failure of the material at… More >

  • Open Access

    ARTICLE

    Characterization of Nanocomposite Membrane Based Bacterial Cellulose Made of Pineapple Waste Reinforced by Graphite Nanoplatelets

    Heru Suryanto1,2,*, Bili Darnanto Susilo3, Jibril Maulana3, Aminnudin3, Uun Yanuhar4, Surjani Wonorahardjo2,5, Husni Wahyu Wijaya2,5, Abu Saad Ansari6

    Journal of Renewable Materials, Vol.10, No.9, pp. 2455-2465, 2022, DOI:10.32604/jrm.2022.020478 - 30 May 2022

    Abstract Waste is the main problem for the environment. Handling waste for various useful applications has a benefit for the future. This work has been studied for handling pineapple peel waste to make composite film bacterial cellulose nanocomposite membrane (BCNM) with addition graphite nanoplatelet (GNP). The concentration of GNP in the membrane influence the membrane properties. The bacterial cellulose (BC) pellicle was synthesized by using media from pineapple peel waste extract. BC pellicle is cleaned with water and NaOH solution to be free from impactors. BCNM is synthesized through the mechanical disintegration stage. The results of… More > Graphic Abstract

    Characterization of Nanocomposite Membrane Based Bacterial Cellulose Made of Pineapple Waste Reinforced by Graphite Nanoplatelets

Displaying 1-10 on page 1 of 29. Per Page