Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access

    ARTICLE

    Research on Vehicle Joint Radar Communication Resource Optimization Method Based on GNN-DRL

    Zeyu Chen1, Jian Sun2,*, Zhengda Huan1, Ziyi Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.071182 - 09 December 2025

    Abstract To address the issues of poor adaptability in resource allocation and low multi-agent cooperation efficiency in Joint Radar and Communication (JRC) systems under dynamic environments, an intelligent optimization framework integrating Deep Reinforcement Learning (DRL) and Graph Neural Network (GNN) is proposed. This framework models resource allocation as a Partially Observable Markov Game (POMG), designs a weighted reward function to balance radar and communication efficiencies, adopts the Multi-Agent Proximal Policy Optimization (MAPPO) framework, and integrates Graph Convolutional Networks (GCN) and Graph Sample and Aggregate (GraphSAGE) to optimize information interaction. Simulations show that, compared with traditional methods More >

  • Open Access

    ARTICLE

    Log-Based Anomaly Detection of System Logs Using Graph Neural Network

    Eman Alsalmi, Abeer Alhuzali*, Areej Alhothali

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071012 - 09 December 2025

    Abstract Log anomaly detection is essential for maintaining the reliability and security of large-scale networked systems. Most traditional techniques rely on log parsing in the reprocessing stage and utilize handcrafted features that limit their adaptability across various systems. In this study, we propose a hybrid model, BertGCN, that integrates BERT-based contextual embedding with Graph Convolutional Networks (GCNs) to identify anomalies in raw system logs, thereby eliminating the need for log parsing. The BERT module captures semantic representations of log messages, while the GCN models the structural relationships among log entries through a text-based graph. This combination More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025

    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

  • Open Access

    ARTICLE

    Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features

    Ghadah Naif Alwakid1, Samabia Tehsin2,*, Mamoona Humayun3,*, Asad Farooq2, Ibrahim Alrashdi1, Amjad Alsirhani1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069162 - 10 November 2025

    Abstract Skin diseases affect millions worldwide. Early detection is key to preventing disfigurement, lifelong disability, or death. Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance, and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks (CNNs). We frame skin lesion recognition as graph-based reasoning and, to ensure fair evaluation and avoid data leakage, adopt a strict lesion-level partitioning strategy. Each image is first over-segmented using SLIC (Simple Linear Iterative Clustering) to produce perceptually homogeneous superpixels. These superpixels form the nodes of a region-adjacency graph whose edges encode… More >

  • Open Access

    ARTICLE

    Graph-Based Intrusion Detection with Explainable Edge Classification Learning

    Jaeho Shin1, Jaekwang Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.068767 - 10 November 2025

    Abstract Network attacks have become a critical issue in the internet security domain. Artificial intelligence technology-based detection methodologies have attracted attention; however, recent studies have struggled to adapt to changing attack patterns and complex network environments. In addition, it is difficult to explain the detection results logically using artificial intelligence. We propose a method for classifying network attacks using graph models to explain the detection results. First, we reconstruct the network packet data into a graphical structure. We then use a graph model to predict network attacks using edge classification. To explain the prediction results, we… More >

  • Open Access

    REVIEW

    Detecting Anomalies in FinTech: A Graph Neural Network and Feature Selection Perspective

    Vinh Truong Hoang1,*, Nghia Dinh1, Viet-Tuan Le1, Kiet Tran-Trung1, Bay Nguyen Van1, Kittikhun Meethongjan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.068733 - 10 November 2025

    Abstract The Financial Technology (FinTech) sector has witnessed rapid growth, resulting in increasingly complex and high-volume digital transactions. Although this expansion improves efficiency and accessibility, it also introduces significant vulnerabilities, including fraud, money laundering, and market manipulation. Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data. Graph Neural Networks (GNNs), capable of modeling intricate interdependencies among entities, have emerged as a powerful framework for detecting subtle and sophisticated anomalies. However, the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability, performance, and More >

  • Open Access

    ARTICLE

    A Novel Unsupervised Structural Attack and Defense for Graph Classification

    Yadong Wang1, Zhiwei Zhang1,*, Pengpeng Qiao2, Ye Yuan1, Guoren Wang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068590 - 10 November 2025

    Abstract Graph Neural Networks (GNNs) have proven highly effective for graph classification across diverse fields such as social networks, bioinformatics, and finance, due to their capability to learn complex graph structures. However, despite their success, GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy. Existing adversarial attack strategies primarily rely on label information to guide the attacks, which limits their applicability in scenarios where such information is scarce or unavailable. This paper introduces an innovative unsupervised attack method for graph classification, which operates without relying on label information, thereby enhancing its applicability… More >

  • Open Access

    ARTICLE

    DenseSwinGNNNet: A Novel Deep Learning Framework for Accurate Turmeric Leaf Disease Classification

    Seerat Singla1, Gunjan Shandilya1, Ayman Altameem2, Ruby Pant3, Ajay Kumar4, Ateeq Ur Rehman5,*, Ahmad Almogren6,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 4021-4057, 2025, DOI:10.32604/phyton.2025.073354 - 29 December 2025

    Abstract Turmeric Leaf diseases pose a major threat to turmeric cultivation, causing significant yield loss and economic impact. Early and accurate identification of these diseases is essential for effective crop management and timely intervention. This study proposes DenseSwinGNNNet, a hybrid deep learning framework that integrates DenseNet-121, the Swin Transformer, and a Graph Neural Network (GNN) to enhance the classification of turmeric leaf conditions. DenseNet121 extracts discriminative low-level features, the Swin Transformer captures long-range contextual relationships through hierarchical self-attention, and the GNN models inter-feature dependencies to refine the final representation. A total of 4361 images from the… More >

  • Open Access

    ARTICLE

    GLM-EP: An Equivariant Graph Neural Network and Protein Language Model Integrated Framework for Predicting Essential Proteins in Bacteriophages

    Jia Mi1, Zhikang Liu1, Chang Li2, Jing Wan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4089-4106, 2025, DOI:10.32604/cmes.2025.074364 - 23 December 2025

    Abstract Recognizing essential proteins within bacteriophages is fundamental to uncovering their replication and survival mechanisms and contributes to advances in phage-based antibacterial therapies. Despite notable progress, existing computational techniques struggle to represent the interplay between sequence-derived and structure-dependent protein features. To overcome this limitation, we introduce GLM-EP, a unified framework that fuses protein language models with equivariant graph neural networks. By merging semantic embeddings extracted from amino acid sequences with geometry-aware graph representations, GLM-EP enables an in-depth depiction of phage proteins and enhances essential protein identification. Evaluation on diverse benchmark datasets confirms that GLM-EP surpasses conventional More >

  • Open Access

    ARTICLE

    Graph Neural Network-Assisted Lion Swarm Optimization for Traffic Congestion Prediction in Intelligent Urban Mobility Systems

    Meshari D. Alanazi1, Gehan Elsayed2,*, Turki M. Alanazi3, Anis Sahbani4, Amr Yousef5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2277-2309, 2025, DOI:10.32604/cmes.2025.070726 - 26 November 2025

    Abstract Traffic congestion plays a significant role in intelligent transportation systems (ITS) due to rapid urbanization and increased vehicle concentration. The congestion is dependent on multiple factors, such as limited road occupancy and vehicle density. Therefore, the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment. Conventional prediction systems face difficulties in identifying highly congested areas, which leads to reduced prediction accuracy. The problem is addressed by integrating Graph Neural Networks (GNN) with the Lion Swarm Optimization (LSO) framework to tackle the congestion prediction problem. Initially, the traffic information is… More >

Displaying 1-10 on page 1 of 63. Per Page