Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Computer Vision with Machine Learning Enabled Skin Lesion Classification Model

    Romany F. Mansour1,*, Sara A. Althubiti2, Fayadh Alenezi3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 849-864, 2022, DOI:10.32604/cmc.2022.029265 - 18 May 2022

    Abstract Recently, computer vision (CV) based disease diagnosis models have been utilized in various areas of healthcare. At the same time, deep learning (DL) and machine learning (ML) models play a vital role in the healthcare sector for the effectual recognition of diseases using medical imaging tools. This study develops a novel computer vision with optimal machine learning enabled skin lesion detection and classification (CVOML-SLDC) model. The goal of the CVOML-SLDC model is to determine the appropriate class labels for the test dermoscopic images. Primarily, the CVOML-SLDC model derives a gaussian filtering (GF) approach to pre-process More >

  • Open Access

    ARTICLE

    Image Dehazing Based on Pixel Guided CNN with PAM via Graph Cut

    Fayadh Alenezi*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3425-3443, 2022, DOI:10.32604/cmc.2022.023339 - 07 December 2021

    Abstract Image dehazing is still an open research topic that has been undergoing a lot of development, especially with the renewed interest in machine learning-based methods. A major challenge of the existing dehazing methods is the estimation of transmittance, which is the key element of haze-affected imaging models. Conventional methods are based on a set of assumptions that reduce the solution search space. However, the multiplication of these assumptions tends to restrict the solutions to particular cases that cannot account for the reality of the observed image. In this paper we reduce the number of simplified… More >

  • Open Access

    ARTICLE

    Leveraging Graph Cut’s Energy Function for Context Aware Facial Recognition in Indoor Environments

    Kazeem Oyebode1, Shengzhi Du2,*, Barend Jacobus van Wyk3

    Computer Systems Science and Engineering, Vol.38, No.2, pp. 229-238, 2021, DOI:10.32604/csse.2021.015372 - 23 April 2021

    Abstract Context-aware facial recognition regards the recognition of faces in association with their respective environments. This concept is useful for the domestic robot which interacts with humans when performing specific functions in indoor environments. Deep learning models have been relevant in solving facial and place recognition challenges; however, they require the procurement of training images for optimal performance. Pre-trained models have also been offered to reduce training time significantly. Regardless, for classification tasks, custom data must be acquired to ensure that learning models are developed from other pre-trained models. This paper proposes a place recognition model… More >

Displaying 1-10 on page 1 of 3. Per Page