Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    From Detection to Explanation: Integrating Temporal and Spatial Features for Rumor Detection and Explaining Results Using LLMs

    Nanjiang Zhong*, Xinchen Jiang, Yuan Yao

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4741-4757, 2025, DOI:10.32604/cmc.2025.059536 - 06 March 2025

    Abstract The proliferation of rumors on social media has caused serious harm to society. Although previous research has attempted to use deep learning methods for rumor detection, they did not simultaneously consider the two key features of temporal and spatial domains. More importantly, these methods struggle to automatically generate convincing explanations for the detection results, which is crucial for preventing the further spread of rumors. To address these limitations, this paper proposes a novel method that integrates both temporal and spatial features while leveraging Large Language Models (LLMs) to automatically generate explanations for the detection results.… More >

  • Open Access

    ARTICLE

    SGP-GCN: A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting

    Xin Liu1,*, Meng Sun1, Bo Lin2, Shibo Gu1

    Energy Engineering, Vol.122, No.3, pp. 1053-1072, 2025, DOI:10.32604/ee.2025.060489 - 07 March 2025

    Abstract Long-term petroleum production forecasting is essential for the effective development and management of oilfields. Due to its ability to extract complex patterns, deep learning has gained popularity for production forecasting. However, existing deep learning models frequently overlook the selective utilization of information from other production wells, resulting in suboptimal performance in long-term production forecasting across multiple wells. To achieve accurate long-term petroleum production forecast, we propose a spatial-geological perception graph convolutional neural network (SGP-GCN) that accounts for the temporal, spatial, and geological dependencies inherent in petroleum production. Utilizing the attention mechanism, the SGP-GCN effectively captures… More >

  • Open Access

    ARTICLE

    Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks

    Xin Fan1,2, Zhenlei Fu1,2,*, Jian Shu1,2, Zuxiong Shen1,2, Yun Ge1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2583-2607, 2025, DOI:10.32604/cmc.2024.057695 - 17 February 2025

    Abstract Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of… More >

  • Open Access

    ARTICLE

    Resilience Augmentation in Unmanned Weapon Systems via Multi-Layer Attention Graph Convolutional Neural Networks

    Kexin Wang*, Yingdong Gou, Dingrui Xue*, Jiancheng Liu, Wanlong Qi, Gang Hou, Bo Li

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2941-2962, 2024, DOI:10.32604/cmc.2024.052893 - 15 August 2024

    Abstract The collective Unmanned Weapon System-of-Systems (UWSOS) network represents a fundamental element in modern warfare, characterized by a diverse array of unmanned combat platforms interconnected through heterogeneous network architectures. Despite its strategic importance, the UWSOS network is highly susceptible to hostile infiltrations, which significantly impede its battlefield recovery capabilities. Existing methods to enhance network resilience predominantly focus on basic graph relationships, neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS. To address these limitations, we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network (E-MAGCN), designed to augment the adaptability of More >

  • Open Access

    ARTICLE

    Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction

    Chuyuan Wei*, Jinzhe Li, Zhiyuan Wang, Shanshan Wan, Maozu Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3299-3314, 2024, DOI:10.32604/cmc.2024.047811 - 15 May 2024

    Abstract Deep neural network-based relational extraction research has made significant progress in recent years, and it provides data support for many natural language processing downstream tasks such as building knowledge graph, sentiment analysis and question-answering systems. However, previous studies ignored much unused structural information in sentences that could enhance the performance of the relation extraction task. Moreover, most existing dependency-based models utilize self-attention to distinguish the importance of context, which hardly deals with multiple-structure information. To efficiently leverage multiple structure information, this paper proposes a dynamic structure attention mechanism model based on textual structure information, which deeply… More >

  • Open Access

    ARTICLE

    An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework

    Yuchen Zhou1, Hongtao Huo1, Zhiwen Hou1, Lingbin Bu1, Yifan Wang1, Jingyi Mao1, Xiaojun Lv2, Fanliang Bu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 537-563, 2024, DOI:10.32604/cmes.2023.044895 - 30 December 2023

    Abstract Graph Convolutional Neural Networks (GCNs) have been widely used in various fields due to their powerful capabilities in processing graph-structured data. However, GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions, resulting in substantial distortions. Moreover, most of the existing GCN models are shallow structures, which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures. To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information… More >

  • Open Access

    ARTICLE

    Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks

    Motasem S. Alsawadi*, Miguel Rio

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4643-4658, 2022, DOI:10.32604/cmc.2022.022783 - 14 January 2022

    Abstract Action recognition has been recognized as an activity in which individuals’ behaviour can be observed. Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events. A skeleton representation of the human body has been proven to be effective for this task. The skeletons are presented in graphs form-like. However, the topology of a graph is not structured like Euclidean-based data. Therefore, a new set of methods to perform the convolution operation upon the skeleton graph is proposed. Our proposal is based on the Spatial… More >

Displaying 1-10 on page 1 of 7. Per Page