Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems

    Sang-min Lee, Namgi Kim*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1897-1914, 2024, DOI:10.32604/cmc.2023.046346 - 27 February 2024

    Abstract Recommendation Information Systems (RIS) are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet. Graph Convolution Network (GCN) algorithms have been employed to implement the RIS efficiently. However, the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process. To address this issue, we propose a Weighted Forwarding method using the GCN (WF-GCN) algorithm. The proposed method involves multiplying the embedding results with different weights for each hop layer during graph… More >

Displaying 1-10 on page 1 of 1. Per Page