Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Predicting Grain Orientations of 316 Stainless Steel Using Convolutional Neural Networks

    Dhia K. Suker, Ahmed R. Abdo*, Khalid Abdulkhaliq M. Alharbi

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 929-947, 2024, DOI:10.32604/iasc.2024.056341 - 31 October 2024

    Abstract This paper presents a deep learning Convolutional Neural Network (CNN) for predicting grain orientations from electron backscatter diffraction (EBSD) patterns. The proposed model consists of multiple neural network layers and has been trained on a dataset of EBSD patterns obtained from stainless steel 316 (SS316). Grain orientation changes when considering the effects of temperature and strain rate on material deformation. The deep learning CNN predicts material orientation using the EBSD method to address this challenge. The accuracy of this approach is evaluated by comparing the predicted crystal orientation with the actual orientation under different conditions, More >

Displaying 1-10 on page 1 of 1. Per Page