Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    PLDMLT: Multi-Task Learning of Diabetic Retinopathy Using the Pixel-Level Labeled Fundus Images

    Hengyang Liu, Chuncheng Huang*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1745-1761, 2023, DOI:10.32604/cmc.2023.040710 - 30 August 2023

    Abstract In the field of medical images, pixel-level labels are time-consuming and expensive to acquire, while image-level labels are relatively easier to obtain. Therefore, it makes sense to learn more information (knowledge) from a small number of hard-to-get pixel-level annotated images to apply to different tasks to maximize their usefulness and save time and training costs. In this paper, using Pixel-Level Labeled Images for Multi-Task Learning (PLDMLT), we focus on grading the severity of fundus images for Diabetic Retinopathy (DR). This is because, for the segmentation task, there is a finely labeled mask, while the severity… More >

Displaying 1-10 on page 1 of 1. Per Page