Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning

    V. Sudha1,*, T. R. Ganeshbabu2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 827-842, 2021, DOI:10.32604/cmc.2020.012008 - 30 October 2020

    Abstract Diabetic Retinopathy (DR) is a type of disease in eyes as a result of a diabetic condition that ends up damaging the retina, leading to blindness or loss of vision. Morphological and physiological retinal variations involving slowdown of blood flow in the retina, elevation of leukocyte cohesion, basement membrane dystrophy, and decline of pericyte cells, develop. As DR in its initial stage has no symptoms, early detection and automated diagnosis can prevent further visual damage. In this research, using a Deep Neural Network (DNN), segmentation methods are proposed to detect the retinal defects such as… More >

  • Open Access

    ARTICLE

    An Efficient Energy Routing Protocol Based on Gradient Descent Method in WSNs

    Ru Jin*, Xinlian Zhou, Yue Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.3, pp. 115-123, 2020, DOI:10.32604/jihpp.2020.010180 - 18 December 2020

    Abstract In a wireless sensor network [1], the operation of a node depends on the battery power it carries. Because of the environmental reasons, the node cannot replace the battery. In order to improve the life cycle of the network, energy becomes one of the key problems in the design of the wireless sensor network (WSN) routing protocol [2]. This paper proposes a routing protocol ERGD based on the method of gradient descent that can minimizes the consumption of energy. Within the communication radius of the current node, the distance between the current node and the More >

Displaying 1-10 on page 1 of 2. Per Page