Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Ensemble Based Learning with Accurate Motion Contrast Detection

    M. Indirani*, S. Shankar

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1657-1674, 2023, DOI:10.32604/iasc.2023.026148 - 19 July 2022

    Abstract Recent developments in computer vision applications have enabled detection of significant visual objects in video streams. Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization (SPSOM) and Incremental Deep Convolution Neural Networks (IDCNN) for detecting multiple objects. However, the study considered optical flows resulting in assessing motion contrasts. Existing methods have issue with accuracy and error rates in motion contrast detection. Hence, the overall object detection performance is reduced significantly. Thus, consideration of object motions in videos efficiently is a critical issue to be solved. To overcome the above… More >

  • Open Access

    ARTICLE

    Glowworm Optimization with Deep Learning Enabled Cybersecurity in Social Networks

    Ashit Kumar Dutta1,*, Basit Qureshi2, Yasser Albagory3, Majed Alsanea4, Anas Waleed AbulFaraj5, Abdul Rahaman Wahab Sait6

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 2097-2110, 2022, DOI:10.32604/iasc.2022.027500 - 25 May 2022

    Abstract Recently, the exponential utilization of Internet has posed several cybersecurity issues in social networks. Particularly, cyberbulling becomes a common threat to users in real time environment. Automated detection and classification of cyberbullying in social networks become an essential task, which can be derived by the use of machine learning (ML) and deep learning (DL) approaches. Since the hyperparameters of the DL model are important for optimal outcomes, appropriate tuning strategy becomes important by the use of metaheuristic optimization algorithms. In this study, an effective glowworm swarm optimization (GSO) with deep neural network (DNN) model named… More >

  • Open Access

    ARTICLE

    A Novel Approach Based on Hybrid Algorithm for Energy Efficient Cluster Head Identification in Wireless Sensor Networks

    C. Ram Kumar1,*, K. Murali Krishna2, Mohammad Shabbir Alam3, K. Vigneshwaran4, Sridharan Kannan5, C. Bharatiraja6

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 259-273, 2022, DOI:10.32604/csse.2022.023477 - 23 March 2022

    Abstract The Wireless Sensor Networks (WSN) is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission. The clustering technique employed to group the collection of nodes for data transmission and each node is assigned with a cluster head. The major concern with the identification of the cluster head is the consideration of energy consumption and hence this paper proposes an hybrid model which forms an energy efficient cluster head in the Wireless Sensor Network. The proposed model is a hybridization of Glowworm Swarm Optimization (GSO) and More >

  • Open Access

    ARTICLE

    Speed Control of Motor Based on Improved Glowworm Swarm Optimization

    Zhenzhou Wang1, Yan Zhang1, Pingping Yu1,*, Ning Cao2, Heiner Dintera3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 503-519, 2021, DOI:10.32604/cmc.2021.017624 - 04 June 2021

    Abstract To better regulate the speed of brushless DC motors, an improved algorithm based on the original Glowworm Swarm Optimization is proposed. The proposed algorithm solves the problems of poor robustness, slow convergence, and low accuracy exhibited by traditional PID controllers. When selecting the glowworm neighborhood set, an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution. After the glowworm’s position is updated, the league selection operator is introduced to search for the global optimal solution. Combining the local search… More >

  • Open Access

    ARTICLE

    Deep Learning Based Intelligent and Sustainable Smart Healthcare Application in Cloud-Centric IoT

    K. V. Praveen1, P. M. Joe Prathap2, S. Dhanasekaran3, I. S. Hephzi Punithavathi4, P. Duraipandy5, Irina V. Pustokhina6, Denis A. Pustokhin7,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1987-2003, 2021, DOI:10.32604/cmc.2020.012398 - 26 November 2020

    Abstract Recent developments in information technology can be attributed to the development of smart cities which act as a key enabler for next-generation intelligent systems to improve security, reliability, and efficiency. The healthcare sector becomes advantageous and offers different ways to manage patient information in order to improve healthcare service quality. The futuristic sustainable computing solutions in e-healthcare applications depend upon Internet of Things (IoT) in cloud computing environment. The energy consumed during data communication from IoT devices to cloud server is significantly high and it needs to be reduced with the help of clustering techniques.… More >

Displaying 1-10 on page 1 of 5. Per Page