Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025

    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    Zero-Shot Vision-Based Robust 3D Map Reconstruction and Obstacle Detection in Geometry-Deficient Room-Scale Environments

    Taehoon Kim, Sehun Lee, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.071597 - 09 December 2025

    Abstract As large, room-scale environments become increasingly common, their spatial complexity increases due to variable, unstructured elements. Consequently, demand for room-scale service robots is surging, yet most technologies remain corridor-centric, and autonomous navigation in expansive rooms becomes unstable even around static obstacles. Existing approaches face several structural limitations. These include the labor-intensive requirement for large-scale object annotation and continual retraining, as well as the vulnerability of vanishing point or line-based methods when geometric cues are insufficient. In addition, the high cost of LiDAR and 3D perception errors caused by limited wall cues and dense interior clutter… More >

  • Open Access

    ARTICLE

    Influence of Nozzle Geometry and Operating Parameters on High-Pressure Water Jets

    Yuxin Wang1, Youjiang Wang2, Jieping Wang2, Chao Zhang1,*, Fanguang Meng3, Linhua Zhang1, Yongxing Song1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2761-2777, 2025, DOI:10.32604/fdmp.2025.072236 - 01 December 2025

    Abstract High-pressure water jet technology has emerged as a highly effective method for removing industrial-scale deposits from pipelines, offering a clean, efficient, and environmentally sustainable alternative to conventional mechanical or chemical cleaning techniques. Among the many parameters influencing its performance, the geometry of the nozzle plays a decisive role in governing jet coherence, impact pressure distribution, and overall cleaning efficiency. In this study, a comprehensive numerical and experimental investigation is conducted to elucidate the influence of nozzle geometry on the behavior of high-pressure water jets. Using Computational Fluid Dynamics (CFD) simulations based on the Volume of… More >

  • Open Access

    REVIEW

    State-of-Art on Workability and Strength of Ultra-High-Performance Fiber-Reinforced Concrete: Influence of Fiber Geometry, Material Type, and Hybridization

    Qi Feng1,2, Weijie Hu1, Lu Liu3,*, Junhui Luo4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1589-1605, 2025, DOI:10.32604/sdhm.2025.072955 - 17 November 2025

    Abstract Ultra-high performance fiber-reinforced concrete (UHPFRC) has received extensive attention from scholars and engineers due to its excellent mechanical properties and durability. However, there is a mutually restrictive relationship between the workability and mechanical properties of UHPFRC. Specifically, the addition of fibers will affect the workability of fresh UHPFRC, and the workability of fresh UHPFRC will also affect the dispersion and arrangement of fibers, thus significantly influencing the mechanical properties of hardened UHPFRC. This paper first analyzes the research status of UHPFRC and the relationship between its workability and mechanical properties. Subsequently, it outlines the test… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Inverse Design: Exploring Latent Space Information for Geometric Structure Optimization

    Nguyen Dong Phuong1, Nanthakumar Srivilliputtur Subbiah1, Yabin Jin2, Xiaoying Zhuang1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 263-303, 2025, DOI:10.32604/cmes.2025.067100 - 30 October 2025

    Abstract Traditional inverse neural network (INN) approaches for inverse design typically require auxiliary feedforward networks, leading to increased computational complexity and architectural dependencies. This study introduces a standalone INN methodology that eliminates the need for feedforward networks while maintaining high reconstruction accuracy. The approach integrates Principal Component Analysis (PCA) and Partial Least Squares (PLS) for optimized feature space learning, enabling the standalone INN to effectively capture bidirectional mappings between geometric parameters and mechanical properties. Validation using established numerical datasets demonstrates that the standalone INN architecture achieves reconstruction accuracy equal or better than traditional tandem approaches while More >

  • Open Access

    PROCEEDINGS

    Flow and Heat Transfer Performance of Porous Heat Exchanger Based on Conformal Geometry Design

    Yijin Zhang, Panding Wang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011144

    Abstract As a type of porous material with high porosity and a large surface-area-to-volume ratio, triply periodic minimal surface (TPMS) structures divide space into two non-interconnected parts. This increases the contact area while maintaining full connectivity and smoothness, which helps reduce flow resistance, making it naturally suited for applications in heat exchange designs. The advancement of additive manufacturing (AM) technology has contributed to the development of TPMS-based heat exchangers. However, due to the complexity of fluid heat exchanger designs, developing effective representations, models, and optimization schemes for TPMS structures in multi-fluid heat exchange problems is very… More >

  • Open Access

    ARTICLE

    Analytical Modeling and Comparative Analysis of Capillary Imbibition in Shale Pores of Various Geometries

    Jin Xue, Boyun Guo*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3307-3328, 2025, DOI:10.32604/cmes.2025.069909 - 30 September 2025

    Abstract Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance, both of which are closely related to the pore geometry. This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models. These models include circular, square, and equilateral triangular capillaries; a triangular star-shaped cross-section formed by three tangent spherical particles; and a traditional porous medium representation method. All these models are derived based on Newton’s second law, where capillary pressure is described by the Young-Laplace equation and viscous… More >

  • Open Access

    REVIEW

    Fatigue Resistance in Engineering Components: A Comprehensive Review on the Role of Geometry and Its Optimization

    Ibrahim T. Teke1,2, Ahmet H. Ertas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 201-237, 2025, DOI:10.32604/cmes.2025.066644 - 31 July 2025

    Abstract Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading. While earlier studies mainly examined material properties and how stress affects lifespan, this review offers the first comprehensive, multiscale comparison of strategies that optimize geometry to improve fatigue performance. This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets, notches, and overall structural layouts. We analyze and combine various methods, including topology and shape optimization, the ability of additive manufacturing to fine-tune internal geometries, and reliability-based More >

  • Open Access

    ARTICLE

    FastSECOND: Real-Time 3D Detection via Swin-Transformer Enhanced SECOND with Geometry-Aware Learning

    Xinyu Li1,2, Gang Wan2, Xinyang Chen3, Liyue Qie3, Xinnan Fan3, Pengfei Shi3, Jin Wan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1071-1090, 2025, DOI:10.32604/cmes.2025.064775 - 31 July 2025

    Abstract The inherent limitations of 2D object detection, such as inadequate spatial reasoning and susceptibility to environmental occlusions, pose significant risks to the safety and reliability of autonomous driving systems. To address these challenges, this paper proposes an enhanced 3D object detection framework (FastSECOND) based on an optimized SECOND architecture, designed to achieve rapid and accurate perception in autonomous driving scenarios. Key innovations include: (1) Replacing the Rectified Linear Unit (ReLU) activation functions with the Gaussian Error Linear Unit (GELU) during voxel feature encoding and region proposal network stages, leveraging partial convolution to balance computational efficiency… More >

  • Open Access

    ARTICLE

    Optimization of Guide Vane Geometry in a Pump-as-Turbine through an Orthogonal Test Approach

    Fengxia Shi1,2, Pengcheng Wang1,*, Haonan Zhan1, Xiangyun Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1221-1238, 2025, DOI:10.32604/fdmp.2025.062244 - 30 May 2025

    Abstract To investigate the impact of guide vane geometry—specifically, outlet angle, blade count, and radial height—on the performance of a Pump as Turbine (PAT), radial guide vanes were introduced upstream of the impeller in an IS80-50-315 low-specific-speed centrifugal PAT. Using an orthogonal test design, numerical simulations were conducted on 16 different PAT configurations, and the influence of vane geometry on performance was analyzed through a range analysis to determine the optimal parameter combinations. The results indicate that the number of guide vane blades significantly affects both the hydraulic efficiency and water head of the PAT under More >

Displaying 1-10 on page 1 of 75. Per Page