Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    PROCEEDINGS

    Exploration of Alloy Composition-Phase Relationships: High-Throughput Experimental Concepts and Approaches

    Liang Jiang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012946

    Abstract The Materials Genome Engineering (MGE) spurs the developments and applications of methods and tools in high-throughput experiments, integrated computation materials engineering and big data. Due to the unique importance and characteristics of structural alloys, there are great needs for MGE high throughput experimental methods and tools to enable efficient establishment of the complex alloy composition-microstructures-property relationships. To explore the alloy composition-phase relationships, several high-throughput experimental concepts are discussed. The diffusion-based high-throughput experimental concepts and approaches are highlighted from generating composition spread, automating characterization, and to illustrating systematic analysis. In particular, the evolution of diffusion multiple More >

  • Open Access

    ARTICLE

    Genome-Wide Identification and Expression Analysis of GS and GOGAT Gene Family in Pecan (Carya illinoinensis) under Different Nitrogen Forms

    Zhenbing Qiao1,2, Mengyun Chen1,2, Wenjun Ma1,2, Juan Zhao1,2, Jiaju Zhu1,2, Kaikai Zhu1,2, Pengpeng Tan1,2, Fangren Peng1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2349-2365, 2024, DOI:10.32604/phyton.2024.056655 - 30 September 2024

    Abstract Ammonium nitrogen (NH4+-N) is one of the main forms of nitrogen absorbed and utilized by plants, and mastering the regulatory mechanism of plant ammonium assimilation is a key way to improve the efficiency of plant nitrogen utilization. Glutamine synthetase (GS) and glutamate synthase (GOGAT), two key enzymes for ammonium assimilation, have rarely been studied in pecan. In this study, GS and GOGAT family members of pecan were identified and analyzed using bioinformatics methods. The results indicated that 6 GS and 4 GOGAT genes were identified. The cis-acting elements can be broadly categorized into light-responsive, hormone-responsive, and stress-responsive elements.… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification of the MYB Gene Family and Screening of Potential Genes Involved in Fatty Acid Biosynthesis in Walnut

    Dongxue Su1, Jiarui Zheng1, Yuwei Yi1, Shuyuan Zhang1, Luxin Feng1, Danzeng Quzhen2, De Qiong3, Weiwei Zhang1, Qijian Wang1, Feng Xu1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2317-2337, 2024, DOI:10.32604/phyton.2024.055350 - 30 September 2024

    Abstract The multifaceted roles of MYB transcriptional regulators are pivotal in orchestrating the complex processes of secondary metabolism, stress tolerance mechanisms, and life cycle progression and development. This study extensively examined the JrMYB genes using whole genome and transcriptomic data, focusing on identifying putative MYB genes associated with fatty acid metabolism. 126 MYB genes were identified within the walnut genome, characterized by hydrophilic proteins spanning lengths ranging from 78 to 1890 base pairs. Analysis of cis-acting elements within the promoter regions of MYB genes revealed many elements linked to cell development, environmental stress, and phytohormones. Transcriptomic data was utilized… More > Graphic Abstract

    Genome-Wide Identification of the <i>MYB</i> Gene Family and Screening of Potential Genes Involved in Fatty Acid Biosynthesis in Walnut

  • Open Access

    ARTICLE

    Genome-Wide Identification of ABCC Gene Subfamily Members and Functional Analysis of CsABCC11 in Camellia sinensis

    Mingyuan Luo1, Shiyu Tian1, Xinzhuan Yao2, Yue Wan4, Zhouzhuoer Chen1, Zifan Yang4, Huagen Hao4, Fei Liu3, Hu Tang1,2,*, Litang Lu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 2019-2036, 2024, DOI:10.32604/phyton.2024.052938 - 30 August 2024

    Abstract The ATP-binding cassette (ABC) transporter is a gene superfamily in plants. ATP-binding cassette subfamily C (ABCC) protein is a multidrug resistance-associated (MRP) transporter. They play various roles in plant growth, development, and secondary metabolite transport. However, there are few studies on ABCC transporters in tea plants. In this study, genome-wide association study (GWAS) analysis of epigallocatechin gallate (EGCG) content in 108 strains of Kingbird revealed that CsABCCs may be involved in EGCG transport. We identified 25 CsABCC genes at the genomic level of the tea plant, their phylogenetic tree, gene structure, targeted miRNA and other bioinformatics… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification and Expression Analysis of the GSK3 Gene Family in Sunflower under Various Abiotic Stresses

    Xianwen Ji#, Ziying Jiang#, Jichao Wang, Lili Dong, Xinyi Deng*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1839-1850, 2024, DOI:10.32604/phyton.2024.052809 - 30 August 2024

    Abstract Genes in the glycogen synthase kinase 3 (GSK3) family are essential in regulating plant response to stressful conditions. This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database. The expressions of GSK3 genes in different tissues and stress treatments, such as salt, drought, and cold, were assessed using transcriptome sequencing and quantitative real-time PCR (qRT-PCR). The study results revealed that the 12 GSK3 genes of sunflower, belonging to four classes (Classes I–IV), contained the GSK3 kinase domain and 11–13 exons. The majority of GSK3 genes were highly expressed in the leaf axil and… More >

  • Open Access

    ARTICLE

    Structural Characterization of Chloroplast Genome in Alpinia japonica (Thunb.) Miq., a Medicinal Plant of the Genus Alpinia

    Wentao Sheng, Xi Lei, Xinjie Chen, Quan Kuang*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1897-1911, 2024, DOI:10.32604/phyton.2024.052395 - 30 August 2024

    Abstract The analysis of chloroplast gene characteristics in Alpinia japonica (Thunb.) Miq. is of great significance for developing relevant genetic resources. The high-throughput sequencing and bioinformatic research were performed to analyze the chloroplast genome characteristics of A. japonica. The total chloroplast genome length of A. japonica was 161,906 bp, with a typical circular tetrameric structure. And 133 genes were annotated, comprising 87 protein-coding, 38 tRNA, and 8 rRNA genes. Furthermore, 22 genes contained two copies, and 18 genes owned introns. Repeat sequence analysis showed that it contains 321 simple sequence repeats (SSRs) and 37 long segment repeats. Compared with… More >

  • Open Access

    ARTICLE

    Mitochondrial Genome Analysis of Myricaria laxiflora, a Protected Endangered Plant

    Chaoying Wang1, Lihui Ma2, Yingzan Xie2, Bo Ding3, Jingsi Huang4, Qian Wang4,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1981-1993, 2024, DOI:10.32604/phyton.2024.050099 - 30 August 2024

    Abstract Myricaria laxiflora, which grows along the Yangtze River in China, holds ornamental, ecological, and medicinal value. However, its wild population is threatened and currently designated protected as a national priority. The present research was the first to sequence and assemble M. laxiflora’s mitochondrial genome and examine its structural characteristics and phylogenetic relationships with other sequenced Caryophyllales species. The mitochondrial double-stranded closed-ring genome of M. laxiflora was found to be 389,949 bp in length, containing numerous repetitive sequences and RNA editing sites, with 34 protein encoding, 21 tRNA, and 3 rRNA genes. Although there are 22 fragments in the More >

  • Open Access

    ARTICLE

    Genome-Wide Analysis for Yield-Related Agronomic and Biochemical Traits of Chinese and Bangladeshi Grass Pea Genotypes Using SSR Markers

    Md. Mosiur Rahman1,2, Md. Ruhul Quddus3, Quanle Xu4, Muhammad Malek Hossain2, Rong Liu1, Mengwei Li1, Xin Yan1, Guan Li1, Yishan Ji1, Chenyu Wang1, Ashutosh Sarker5, Tao Yang1, Xuxiao Zong1, Md. Monoar Hossain6, Saleh Alfarraj7, Mohammad Javed Ansari8, Sagar Maitra9,*, Akbar Hossain10,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1781-1804, 2024, DOI:10.32604/phyton.2024.048992 - 30 August 2024

    Abstract Grass pea (Lathyrus sativus L.) is an imperative food crop cultured in dryland agricultural ecology. It is a vital source of dietary protein to millions of populaces living in low-income countries in South-East Asia and Africa. This study highlights the improvement of genomic properties and their application in marker-trait relationships for 17 yield-related characters in 400 grass pea genotypes from China and Bangladesh. These characters were assessed via 56 polymorphic markers using general linear model (GLM) (P+G+Q) and mixed linear model (MLM) (P+G+Q+K) in the tassel software based on the linkage disequilibrium and population structure analysis.… More >

  • Open Access

    REVIEW

    Metabolic engineering and genome editing strategies for enhanced lipid production in microalgae

    ANJANI DEVI CHINTAGUNTA1, SAMUDRALA PRASHANT JEEVAN KUMAR2, NUNE SATYA SAMPATH KUMAR1,*

    BIOCELL, Vol.48, No.8, pp. 1181-1195, 2024, DOI:10.32604/biocell.2024.050540 - 02 August 2024

    Abstract Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern, which needs alternative sources to conventional fuels. Oleaginous microalgae have been explored for enhanced lipid production, leading towards biodiesel production. These microalgae have short life cycles, require less labor, and space, and are easy to scale up. Triacylglycerol, the primary source of lipids needed to produce biodiesel, is accumulated by most microalgae. The article focuses on different types of oleaginous microalgae, which can be used as a feedstock to produce biodiesel. Lipid biosynthesis in microalgae occurs through fatty acid More >

  • Open Access

    ARTICLE

    Genome-Wide Discovery and Expression Profiling of the SWEET Sugar Transporter Gene Family in Woodland Strawberry (Fragaria vesca) under Developmental and Stress Conditions: Structural and Evolutionary Analysis

    Shoukai Lin1,3,4,*, Yifan Xiong2, Shichang Xu1,2, Manegdebwaoaga Arthur Fabrice Kabore2, Fan Lin5, Fuxiang Qiu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1485-1502, 2024, DOI:10.32604/phyton.2024.050990 - 30 July 2024

    Abstract The SWEET (sugar will eventually be exported transporter) family proteins are a recently identified class of sugar transporters that are essential for various physiological processes. Although the functions of the SWEET proteins have been identified in a number of species, to date, there have been no reports of the functions of the SWEET genes in woodland strawberries (Fragaria vesca). In this study, we identified 15 genes that were highly homologous to the A. thaliana AtSWEET genes and designated them as FvSWEET1FvSWEET15. We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes. The phylogenetic analysis enabled us… More >

Displaying 1-10 on page 1 of 66. Per Page