Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Uncovering Causal Relationships for Debiased Repost Prediction Using Deep Generative Models

    Wu-Jiu Sun1, Xiao Fan Liu1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4551-4573, 2024, DOI:10.32604/cmc.2024.057714 - 19 December 2024

    Abstract Microblogging platforms like X (formerly Twitter) and Sina Weibo have become key channels for spreading information online. Accurately predicting information spread, such as users’ reposting activities, is essential for applications including content recommendation and analyzing public sentiment. Current advanced models rely on deep representation learning to extract features from various inputs, such as users’ social connections and repost history, to forecast reposting behavior. Nonetheless, these models frequently ignore intrinsic confounding factors, which may cause the models to capture spurious relationships, ultimately impacting prediction performance. To address this limitation, we propose a novel Debiased Reposting Prediction… More >

  • Open Access

    ARTICLE

    A Novel Mixed Precision Distributed TPU GAN for Accelerated Learning Curve

    Aswathy Ravikumar, Harini Sriraman*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 563-578, 2023, DOI:10.32604/csse.2023.034710 - 20 January 2023

    Abstract Deep neural networks are gaining importance and popularity in applications and services. Due to the enormous number of learnable parameters and datasets, the training of neural networks is computationally costly. Parallel and distributed computation-based strategies are used to accelerate this training process. Generative Adversarial Networks (GAN) are a recent technological achievement in deep learning. These generative models are computationally expensive because a GAN consists of two neural networks and trains on enormous datasets. Typically, a GAN is trained on a single server. Conventional deep learning accelerator designs are challenged by the unique properties of GAN,… More >

  • Open Access

    ARTICLE

    Quantum Generative Model with Variable-Depth Circuit

    Yiming Huang1, *, Hang Lei1, Xiaoyu Li1, *, Qingsheng Zhu2, Wanghao Ren3, Xusheng Liu2, 4

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 445-458, 2020, DOI:10.32604/cmc.2020.010390 - 23 July 2020

    Abstract In recent years, an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm. The hybrid quantum-classical framework, which is constructed by a variational quantum circuit (VQC) and an optimizer, plays a key role in the latest quantum machine learning studies. Nevertheless, in these hybridframework-based quantum machine learning models, the VQC is mainly constructed with a fixed structure and this structure causes inflexibility problems. There are also few studies focused on comparing the performance of quantum generative models with… More >

  • Open Access

    ARTICLE

    Multi-Layer Graph Generative Model Using AutoEncoder for Recommendation Systems

    Syed Falahuddin Quadri1, Xiaoyu Li1,*, Desheng Zheng2, Muhammad Umar Aftab1, Yiming Huang3

    Journal on Big Data, Vol.1, No.1, pp. 1-7, 2019, DOI:10.32604/jbd.2019.05899

    Abstract Given the glut of information on the web, it is crucially important to have a system, which will parse the information appropriately and recommend users with relevant information, this class of systems is known as Recommendation Systems (RS)-it is one of the most extensively used systems on the web today. Recently, Deep Learning (DL) models are being used to generate recommendations, as it has shown state-of-the-art (SoTA) results in the field of Speech Recognition and Computer Vision in the last decade. However, the RS is a much harder problem, as the central variable in the… More >

  • Open Access

    ARTICLE

    Coverless Steganography for Digital Images Based on a Generative Model

    Xintao Duan1,*, Haoxian Song1, Chuan Qin2, Muhammad Khurram Khan3

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 483-493, 2018, DOI:10.3970/cmc.2018.01798

    Abstract In this paper, we propose a novel coverless image steganographic scheme based on a generative model. In our scheme, the secret image is first fed to the generative model database, to generate a meaning-normal and independent image different from the secret image. The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image. Thus, we only need to transmit the meaning-normal image which is not related to the secret image, and we can achieve the same effect as the More >

Displaying 1-10 on page 1 of 5. Per Page