Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Genome-Wide Identification and Expression Analysis of GS and GOGAT Gene Family in Pecan (Carya illinoinensis) under Different Nitrogen Forms

    Zhenbing Qiao1,2, Mengyun Chen1,2, Wenjun Ma1,2, Juan Zhao1,2, Jiaju Zhu1,2, Kaikai Zhu1,2, Pengpeng Tan1,2, Fangren Peng1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2349-2365, 2024, DOI:10.32604/phyton.2024.056655 - 30 September 2024

    Abstract Ammonium nitrogen (NH4+-N) is one of the main forms of nitrogen absorbed and utilized by plants, and mastering the regulatory mechanism of plant ammonium assimilation is a key way to improve the efficiency of plant nitrogen utilization. Glutamine synthetase (GS) and glutamate synthase (GOGAT), two key enzymes for ammonium assimilation, have rarely been studied in pecan. In this study, GS and GOGAT family members of pecan were identified and analyzed using bioinformatics methods. The results indicated that 6 GS and 4 GOGAT genes were identified. The cis-acting elements can be broadly categorized into light-responsive, hormone-responsive, and stress-responsive elements.… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification of the MYB Gene Family and Screening of Potential Genes Involved in Fatty Acid Biosynthesis in Walnut

    Dongxue Su1, Jiarui Zheng1, Yuwei Yi1, Shuyuan Zhang1, Luxin Feng1, Danzeng Quzhen2, De Qiong3, Weiwei Zhang1, Qijian Wang1, Feng Xu1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2317-2337, 2024, DOI:10.32604/phyton.2024.055350 - 30 September 2024

    Abstract The multifaceted roles of MYB transcriptional regulators are pivotal in orchestrating the complex processes of secondary metabolism, stress tolerance mechanisms, and life cycle progression and development. This study extensively examined the JrMYB genes using whole genome and transcriptomic data, focusing on identifying putative MYB genes associated with fatty acid metabolism. 126 MYB genes were identified within the walnut genome, characterized by hydrophilic proteins spanning lengths ranging from 78 to 1890 base pairs. Analysis of cis-acting elements within the promoter regions of MYB genes revealed many elements linked to cell development, environmental stress, and phytohormones. Transcriptomic data was utilized… More > Graphic Abstract

    Genome-Wide Identification of the <i>MYB</i> Gene Family and Screening of Potential Genes Involved in Fatty Acid Biosynthesis in Walnut

  • Open Access

    ARTICLE

    Genome-Wide Identification and Expression Analysis of the GSK3 Gene Family in Sunflower under Various Abiotic Stresses

    Xianwen Ji#, Ziying Jiang#, Jichao Wang, Lili Dong, Xinyi Deng*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1839-1850, 2024, DOI:10.32604/phyton.2024.052809 - 30 August 2024

    Abstract Genes in the glycogen synthase kinase 3 (GSK3) family are essential in regulating plant response to stressful conditions. This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database. The expressions of GSK3 genes in different tissues and stress treatments, such as salt, drought, and cold, were assessed using transcriptome sequencing and quantitative real-time PCR (qRT-PCR). The study results revealed that the 12 GSK3 genes of sunflower, belonging to four classes (Classes I–IV), contained the GSK3 kinase domain and 11–13 exons. The majority of GSK3 genes were highly expressed in the leaf axil and… More >

  • Open Access

    ARTICLE

    Identification and Analysis of the WRKY Transcription Factor Gene Family in Verbena bonariensis

    Dandan Yuan, Ju Cai, Tao Zhang, Sisi Wang, Xiuliu Yang, Yan Li*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1875-1896, 2024, DOI:10.32604/phyton.2024.052190 - 30 August 2024

    Abstract The WRKY transcription factor gene family is one of the unique gene families in plants. It plays an important role in response to abiotic stresses such as cold and drought, hormone signal transduction, regulation of biosynthesis, leaf senescence seed germination, etc. However, little information is available about WRKY transcription factors in Verbena bonariensis. In this study, 70 VbWRKY genes were identified from the whole genome. The phylogenetic analysis of the WRKY gene family in V. bonariensis and Arabidopsis shows that the WRKY genes in V. bonariensis can be divided into three groups: I, II, and III, which contain 13, 47, and… More >

  • Open Access

    ARTICLE

    Genome-Wide Discovery and Expression Profiling of the SWEET Sugar Transporter Gene Family in Woodland Strawberry (Fragaria vesca) under Developmental and Stress Conditions: Structural and Evolutionary Analysis

    Shoukai Lin1,3,4,*, Yifan Xiong2, Shichang Xu1,2, Manegdebwaoaga Arthur Fabrice Kabore2, Fan Lin5, Fuxiang Qiu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1485-1502, 2024, DOI:10.32604/phyton.2024.050990 - 30 July 2024

    Abstract The SWEET (sugar will eventually be exported transporter) family proteins are a recently identified class of sugar transporters that are essential for various physiological processes. Although the functions of the SWEET proteins have been identified in a number of species, to date, there have been no reports of the functions of the SWEET genes in woodland strawberries (Fragaria vesca). In this study, we identified 15 genes that were highly homologous to the A. thaliana AtSWEET genes and designated them as FvSWEET1FvSWEET15. We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes. The phylogenetic analysis enabled us… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification of Tomato (Solanum lycopersicum L.) CKX Gene Family and Expression Analysis in the Callus Tissue under Zeatin Treatment

    Zhengfeng Lai, Dongmei Lian, Shaoping Zhang, Yudong Ju, Bizhen Lin, Yunfa Yao, Songhai Wu, Jianji Hong, Zhou Li*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1143-1158, 2024, DOI:10.32604/phyton.2024.051207 - 27 June 2024

    Abstract The cytokinin oxidase/dehydrogenase (CKX) enzyme is essential for controlling the fluctuating levels of endogenous cytokinin (CK) and has a significant impact on different aspects of plant growth and development. Nonetheless, there is limited knowledge about CKX genes in tomato (Solanum lycopersicum L.). Here we performed genome-wide identification and analysis of nine SlCKX family members in tomatoes using bioinformatics tools. The results revealed that nine SlCKX genes were unevenly distributed on five chromosomes (Chr.1, Chr.4, Chr.8, Chr.10, and Chr.12). The amino acid length, isoelectric points, and molecular weight of the nine SlCKX proteins ranged from 453 to 553, 5.77… More >

  • Open Access

    ARTICLE

    Genome-Wide Exploration of the Grape GLR Gene Family and Differential Responses of VvGLR3.1 and VvGLR3.2 to Low Temperature and Salt Stress

    Honghui Sun1,2,#, Ruichao Liu1,2,#, Yueting Qi1, Hongsheng Gao1, Xueting Wang1, Ning Jiang1,2, Xiaotong Guo1,2, Hongxia Zhang1, Chunyan Yu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 533-549, 2024, DOI:10.32604/phyton.2024.049417 - 28 March 2024

    Abstract Grapes, one of the oldest tree species globally, are rich in vitamins. However, environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality. The glutamate receptor (GLR) family, comprising highly conserved ligand-gated ion channels, regulates plant growth and development in response to stress. In this study, 11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis. Bioinformatic methods were employed to analyze the basic physical and chemical properties, phylogenetic trees, conserved domains, motifs, expression patterns, and evolutionary relationships. Phylogenetic and collinear analyses revealed that the VvGLRs… More >

  • Open Access

    ARTICLE

    Identifying and validating MMP family members (MMP2, MMP9, MMP12, and MMP16) as therapeutic targets and biomarkers in kidney renal clear cell carcinoma (KIRC)

    KUNLUN LI1, DANDAN LI2, BARBOD HAFEZ3,*, MOUNIR M. SALEM BEKHIT4, YOUSEF A. BIN JARDAN4, FARS KAED ALANAZI4, EHAB I. TAHA4, SAYED H. AUDA4, FAIQAH RAMZAN5,*, MUHAMMAD JAMIL6

    Oncology Research, Vol.32, No.4, pp. 737-752, 2024, DOI:10.32604/or.2023.042925 - 20 March 2024

    Abstract Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the… More >

  • Open Access

    ARTICLE

    Identification and Molecular Characterization of the Alkaloid Biosynthesis Gene Family in Dendrobium catenatum

    Liping Yang1,#, Xin Wan2,3,#, Runyang Zhou1, Yingdan Yuan1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.1, pp. 81-96, 2024, DOI:10.32604/phyton.2023.045389 - 26 January 2024

    Abstract As one of the main active components of Dendrobium catenatum, alkaloids have high medicinal value. The physicochemical properties, conserved domains and motifs, phylogenetic analysis, and cis-acting elements of the gene family members in the alkaloid biosynthesis pathway of D. catenatum were analyzed by bioinformatics, and the expression of the genes in different years and tissues was analyzed by qRT-PCR. There are 16 gene families, including 25 genes, in the D. catenatum alkaloid biosynthesis pathway. The analysis of conserved domains and motifs showed that the types, quantities, and orders of domains and motifs were similar among members of the More >

  • Open Access

    ARTICLE

    Protein Disulfide Isomerase and Its Potential Function on Endoplasmic Reticulum Quality Control in Diatom Phaeodactylum tricornutum

    Yanhuan Lin1,#, Hua Du2,#, Zhitao Ye2, Shuqi Wang2, Zhen Wang2, Xiaojuan Liu2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.1, pp. 137-150, 2024, DOI:10.32604/phyton.2023.044996 - 26 January 2024

    Abstract PDI is a molecular chaperone and plays an important role in Endoplasmic Reticulum quality control (ERQC). PDI participates in the refolding of the misfolded/unfolded proteins to maintain cellular homeostasis under different stresses. However, bioinformatic characteristics and potential functions of PDIs in diatom Phaeodactylum tricornutum (Pt) are still unknown so far. Hence, the genome-wide characteristics of PtPDI proteins in P. tricornutum were first studied via bioinformatic and transcriptomic methods. 42 PtPDI genes were identified from the genome of P. tricornutum. The motif, protein structure, classification, number of introns, phylogenetic relationship, and the expression level of 42 PtPDI genes under… More >

Displaying 1-10 on page 1 of 28. Per Page