Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,556)
  • Open Access

    ARTICLE

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

    Fankun Meng1,2,3, Yuyang Liu1,2,*, Xiaohua Liu4, Chenlong Duan1,2, Yuhui Zhou1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075865 - 06 February 2026

    Abstract Carbonate gas reservoirs are often characterized by strong heterogeneity, complex inter-well connectivity, extensive edge or bottom water, and unbalanced production, challenges that are also common in many heterogeneous gas reservoirs with intricate storage and flow behavior. To address these issues within a unified, data-driven framework, this study develops a multi-block material balance model that accounts for inter-block flow and aquifer influx, and is applicable to a wide range of reservoir types. The model incorporates inter-well and well-group conductive connectivity together with pseudo–steady-state aquifer support. The governing equations are solved using a Newton–Raphson scheme, while particle More > Graphic Abstract

    A Multi-Block Material Balance Framework for Connectivity Evaluation and Optimization of Water-Drive Gas Reservoirs

  • Open Access

    ARTICLE

    Partial Suppression of the Proline Dehydrogenase Gene Mitigates the Impact of Drought on the Photosynthetic Apparatus and Productivity in Winter Wheat

    Dmytro A. Kiriziy1, Oksana V. Dubrovna1, Oksana G. Sokolovska-Sergiienko1, Alina S. Holoboroda1, Victor V. Rohach1,2, Oleg O. Stasik1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.075371 - 30 January 2026

    Abstract Water scarcity severely constrains the genetic potential of wheat yield worldwide. Proline is among the most versatile stress-related metabolites in plants, and targeting genes involved in proline synthesis and degradation represents a promising strategy for developing drought-tolerant wheat genotypes. This study evaluates the performance of the photosynthetic apparatus in transgenic wheat line with RNAi-mediated suppression of proline dehydrogenase (ProDH) and in the original (wild-type) genotype, under both drought and recovery conditions. Drought was induced at the flowering stage by lowering soil moisture to 30% field capacity for 7 days, compared with 70% field capacity in… More >

  • Open Access

    ARTICLE

    Integrative Analysis of Genetic-Ecological Factors Shaping Epimedium Chemical Diversity

    Ziying Huang1, Ruikang Ma1, Anning Li2, Yufei Cheng1, Xiaolin Lin2, Mengzhi Li3, Yu Zhang2, Liping Shi1, Linlin Dong1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.074419 - 30 January 2026

    Abstract Epimedium is commonly used to treat bone injury and kidney disease, with prenylated flavonol glycosides (PFGs) as its active ingredients. It has attracted much attention due to prominent healthcare and therapeutic effects, but faces problems of adulteration with closely related species and confusion about geographical origins. In this study, multiple technical approaches were employed to identify its genetic characteristics and metabolic differences. Based on DNA barcoding, 20 batches of samples were analyzed. The genetic distances of matK, ITS and psbA-trnH within species were all smaller than those between species, and psbA-trnH along with ITS + psbA-trnH proved most effective… More >

  • Open Access

    ARTICLE

    A Trajectory-Guided Diffusion Model for Consistent and Realistic Video Synthesis in Autonomous Driving

    Beike Yu, Dafang Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.076439 - 29 January 2026

    Abstract Scalable simulation leveraging real-world data plays an essential role in advancing autonomous driving, owing to its efficiency and applicability in both training and evaluating algorithms. Consequently, there has been increasing attention on generating highly realistic and consistent driving videos, particularly those involving viewpoint changes guided by the control commands or trajectories of ego vehicles. However, current reconstruction approaches, such as Neural Radiance Fields and 3D Gaussian Splatting, frequently suffer from limited generalization and depend on substantial input data. Meanwhile, 2D generative models, though capable of producing unknown scenes, still have room for improvement in terms… More >

  • Open Access

    ARTICLE

    A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams

    Van-Viet Nguyen1, Huu-Khanh Nguyen2, Kim-Son Nguyen1, Thi Minh-Hue Luong1, Duc-Quang Vu1, Trung-Nghia Phung3, The-Vinh Nguyen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075442 - 29 January 2026

    Abstract It remains difficult to automate the creation and validation of Unified Modeling Language (UML) diagrams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-R1-Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering analysis showed that 89.5% of the generated diagrams compile correctly, while… More >

  • Open Access

    ARTICLE

    Algorithmically Enhanced Data-Driven Prediction of Shear Strength for Concrete-Filled Steel Tubes

    Shengkang Zhang1, Yong Jin2,*, Soon Poh Yap1,*, Haoyun Fan1, Shiyuan Li3, Ahmed El-Shafie4, Zainah Ibrahim1, Amr El-Dieb5

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075351 - 29 January 2026

    Abstract Concrete-filled steel tubes (CFST) are widely utilized in civil engineering due to their superior load-bearing capacity, ductility, and seismic resistance. However, existing design codes, such as AISC and Eurocode 4, tend to be excessively conservative as they fail to account for the composite action between the steel tube and the concrete core. To address this limitation, this study proposes a hybrid model that integrates XGBoost with the Pied Kingfisher Optimizer (PKO), a nature-inspired algorithm, to enhance the accuracy of shear strength prediction for CFST columns. Additionally, quantile regression is employed to construct prediction intervals for… More >

  • Open Access

    ARTICLE

    Inverse Design of Composite Materials Based on Latent Space and Bayesian Optimization

    Xianrui Lyu, Xiaodan Ren*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074388 - 29 January 2026

    Abstract Inverse design of advanced materials represents a pivotal challenge in materials science. Leveraging the latent space of Variational Autoencoders (VAEs) for material optimization has emerged as a significant advancement in the field of material inverse design. However, VAEs are inherently prone to generating blurred images, posing challenges for precise inverse design and microstructure manufacturing. While increasing the dimensionality of the VAE latent space can mitigate reconstruction blurriness to some extent, it simultaneously imposes a substantial burden on target optimization due to an excessively high search space. To address these limitations, this study adopts a Variational… More >

  • Open Access

    ARTICLE

    An Integrated DNN-FEA Approach for Inverse Identification of Passive, Heterogeneous Material Parameters of Left Ventricular Myocardium

    Zhuofan Li1, Daniel H. Pak2, James S. Duncan2, Liang Liang3, Minliang Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073757 - 29 January 2026

    Abstract Patient-specific finite element analysis (FEA) is a promising tool for noninvasive quantification of cardiac and vascular structural mechanics in vivo. However, inverse material property identification using FEA, which requires iteratively solving nonlinear hyperelasticity problems, is computationally expensive which limits the ability to provide timely patient-specific insights to clinicians. In this study, we present an inverse material parameter identification strategy that integrates deep neural networks (DNNs) with FEA, namely inverse DNN-FEA. In this framework, a DNN encodes the spatial distribution of material parameters and effectively regularizes the inverse solution, which aims to reduce susceptibility to local optima… More >

  • Open Access

    ARTICLE

    PEMFC Performance Degradation Prediction Based on CNN-BiLSTM with Data Augmentation by an Improved GAN

    Xiaolu Wang1,2, Haoyu Sun1, Aiguo Wang1, Xin Xia3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073991 - 27 January 2026

    Abstract To address the issues of insufficient and imbalanced data samples in proton exchange membrane fuel cell (PEMFC) performance degradation prediction, this study proposes a data augmentation-based model to predict PEMFC performance degradation. Firstly, an improved generative adversarial network (IGAN) with adaptive gradient penalty coefficient is proposed to address the problems of excessively fast gradient descent and insufficient diversity of generated samples. Then, the IGAN is used to generate data with a distribution analogous to real data, thereby mitigating the insufficiency and imbalance of original PEMFC samples and providing the prediction model with training data rich More >

  • Open Access

    ARTICLE

    Analysis of Geometrical Arrangement and Packing Material on Heat Generation in Lithium-Ion Battery Banks

    Seenaa Khudhayer Salman1, Shaymaa Husham Abdulmalek2,*, Ali Ahmed Gitan1, Thamer Khalif Salem3, Raaid Rashad Jassem Al-Doury3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073940 - 27 January 2026

    Abstract Operating Lithium-ion batteries at their temperature limits is a challenging design task due to explosion risk at high temperatures and rapid degradation at low temperatures. Depending on the battery package design, those risks can be solved with passive solutions, which require no active cooling or heating. The current work aims to optimize the pack design and materials of the type-NCR18650B battery based on a wide range of operation temperature. The lower limit was denoted by cold case while the maximum limit was expressed by hot case. A combined analytical-numerical approach was developed to model the… More >

Displaying 1-10 on page 1 of 2556. Per Page