Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access

    REVIEW

    Ecosystem Services of Grazed Grasslands in the Flooding Pampa

    Elizabeth J. Jacobo1,#,*, Adriana M. Rodríguez2,#

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1179-1202, 2024, DOI:10.32604/phyton.2024.050928

    Abstract The Flooding Pampa grasslands are the last remnant of the Rio de la Plata grasslands in Argentina. Anthropogenic interventions have led to severe degradation and, as a result, the ecosystem services provided by the grasslands are declining, in terms of provisioning, regulating, and supporting services. We synthesized the existing literature on the ecosystem goods and services provided by these grasslands under grazing in different conditions and conservation status. We found that plant and animal diversity and primary production are the most studied ecosystem services, while climate regulation, water supply, nutrient cycling, meat production and erosion… More >

  • Open Access

    REVIEW

    A Research Progress of CO2-Responsive Plugging Channeling Gels

    Yang Xiong1,2, Jianxin Liu1,2,*, Xianhao Yi2, Bangyan Xiao2, Dan Wu2, Biao Wu2, Chunyu Gao2

    Energy Engineering, Vol.121, No.7, pp. 1759-1780, 2024, DOI:10.32604/ee.2024.048536

    Abstract In the heterogeneous reservoirs, CO2 flooding easily leads to CO2 gas channeling, which can seriously affect sweeping efficiency and reduce oil recovery. After thoroughly investigating the advantages and shortcomings of various CO2 plugging technologies, this paper focuses on the feasibility of improving conventional water-alternating gas (WAG) through CO2-responsive gel materials. Based on the different chemical reaction mechanisms between the unique chemical structure and CO2, changes in the material’s physical and chemical properties can respond to CO2. The feasibility of utilizing these property changes for CO2-responsive plugging is explored. Various CO2-responsive gels and gel nanoparticles have been extensively researched in More >

  • Open Access

    ARTICLE

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

    Xiaoyu Chen*

    Journal of Renewable Materials, Vol.12, No.4, pp. 815-826, 2024, DOI:10.32604/jrm.2024.048470

    Abstract A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions. The core, made of sodium alginate-g-polyacrylamide and attapulgite nanofibers, was cross-linked by Calcium ions (Ca). The shell, composed of a chitosan/activated carbon mixture, was then coated onto the core. Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate. Scanning electron microscopy images showed the core-shell structure. The core exhibited a high water uptake ratio, facilitating the diffusion of methylene blue into the core. During the diffusion process, the methylene blue was first adsorbed by More > Graphic Abstract

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

  • Open Access

    ARTICLE

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

    Susi Susi1,2,*, Makhmudun Ainuri3,*, Wagiman Wagiman3, Mohammad Affan Fajar Falah3

    Journal of Renewable Materials, Vol.12, No.3, pp. 513-537, 2024, DOI:10.32604/jrm.2024.045586

    Abstract Microcrystalline cellulose (MCC) is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity. When implemented in other polymers, high crystallinity correlates with greater strength and stiffnes, but it can reduce the water-holding capacity. The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity, both of which have significance as properties of hydrogel filler. The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid (HCl) and the appropriate hydrolysis… More > Graphic Abstract

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

  • Open Access

    ARTICLE

    Functionalized 2-(hydroxyethyl) methacrylate (HEMA)- co-acrylamide (AAm) hydrogels: Kinetic and Isotherm Modelling Analysis on the Removal of Cu(II) Ions

    AYÇA BAL ÖZTÜRK1,2,*, ZEHRA ÖZBAŞ3, BENGİ ÖZKAHRAMAN4, SERKAN EMİK5

    Journal of Polymer Materials, Vol.36, No.2, pp. 161-173, 2019, DOI:10.32381/JPM.2019.36.02.5

    Abstract A functionalized hydrogel composed of 2-(hydroxyethyl) methacrylate (HEMA) and acrylamide (AAm) was synthesized by amination and saponification reactions, respectively, and its functionality was examined for the elimination of copper(II) ions. The maximum adsorption capacity for copper(II) ions was 0.617 mmol g-1 before saponification, whereas it was 1.2225 mmol g-1 after saponification. The adsorption data was analyzed with pseudo-first-order (r2 =0.8867), intra-particle diffusion (r2 =0.9453), Elovich (r2=0.9489) and pseudo-secondorder(r2 =0.9999) kinetic models. Based on the adsorption equilibrium experimental data Freundlich(r2 =0.9964), Langmuir(r2=0.998) and Dubinin–Radushkevich (D-R) (r2 =0.9960) adsorption isotherms provided good fits for all of experimental results. Finally, the datas of More >

  • Open Access

    ARTICLE

    Swelling dynamics of Poly (N, N- Dimethylacrylamide - co- Crotonic acid) Hydrogel and Evaluation of its Potential for Controlled Release of Fertilizers

    FATMA LOUZRI, SADJIA BENNOUR

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 55-76, 2020, DOI:10.32381/JPM.2020.37.1-2.5

    Abstract Poly(N,N-dimethymethylacrylamide -co-crotonic acid) (P(DMA-CAx)) hydrogels were prepared by free radical polymerization, using N,N- methylenebisacrylamide (NMBA) as cross-linking agent. The synthesized hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The effects of comonomer composition and pH of the medium on the swelling behavior of hydrogels were investigated. The obtained results showed that the swelling capabilities of hydrogels increased as crotonic acid content and pH increased. In order to evaluate the controlled release potential of the polymeric matrix, it was loaded with potassium nitrate and ammonium nitrate as fertilizers and the release More >

  • Open Access

    ARTICLE

    Curing Study of Epoxy Resin of (2E, 6E)-Bis (4-hydroxybenzylidene)-4-methylcyclohexanone with Different Aromatic Diamines and Anhydrides Hardeners: Spectral and Thermal Analysis

    JALPA V. CHOPDA, DHARMESH B. SANKHAVARA, JIGNESH P. PATEL, P. H. PARSANIA*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 35-48, 2021, DOI:10.32381/JPM.2021.38.1-2.4

    Abstract Conventional curing study of epoxy resin of (2E, 6E)-bis (4-hydroxybenzylidene)-4-methyl cyclohexanone (EMBHBC) was conducted at 140 0 /150 0 C by using 4,4’-diaminodiphenylmethane (DDM),4,4’-diaminodiphenylsulphone (DDS),4-4’-diaminodiphenyl ether (DDE), p-phenylenediamine (PDA), 1,2,3,6-tetrahydrophthalic anhydride(THPA), maleic anhydride (MAH) and pyromellitic dianhydride (PMDA). The gel time for DDS, THPA and DDM hardeners are found considerably longer than those of DDE, PDA, MAH and PMDA systems indicated different reactivity towards curing of EMBHBC. Sol–gel analysis of cured resins was carried out in DMF at room temperature. Diamines cured samples showed 76.3-97.5% gel fractions, while anhydrides cured samples showed 84.6-99.6% gel fractions.… More >

  • Open Access

    ARTICLE

    Genipin Cross-linked Boron Doped Hydrogels: Evaluation of Biological Activities

    ELIF ANT BURSALI1,*, DILER ABACI1, MURAT KIZIL2, MURUVVET YURDAKOC1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 231-245, 2021, DOI:10.32381/JPM.2021.38.3-4.5

    Abstract Genipin cross-linked/boron doped starch/polyvinily alcohol (PVA) based hydrogel (SH-GNP-B) was synthesized as a new material having antimicrobial and antioxidant activity. The prepared hydrogel was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM) methods and evaluated for in vitro antimicrobial activities against selected organisms by disc diffusion tests. The antioxidant activity of the prepared hydrogels was evaluated using 2,2-diphenyl-1- picrylhydrazyl radical scavenging assays. Swelling behavior of the hydrogel was also investigated. The synthesized hydrogel was thermally stable and showed pH independent swelling tendency. SH-GNP-B hydrogel More >

  • Open Access

    ARTICLE

    Rheological Study on Blend Solutions of Non-mulberry Silk Fibroin and Gelatin Biopolymers

    PRITI1,*, RADHA SACHAN2, ROLI PURWAR3

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 205-214, 2023, DOI:10.32381/JPM.2023.40.3-4.6

    Abstract In current research work, we have studied the blending effect of non-mulberry silk fibroin (10% weight/volume basis) and gelatin (20% weight/volume basis) in formic acid. Several blends as SF10G0, SF2G8, SF3G7, SF5G5 and SF0G10 have been made and their rheological behaviour was investigated. The blend solutions were subjected to a steady shear rheological study in the variety of range of shear rates, namely 0.01–500 sec-1 and the viscosities of blend solutions were noticed to decrease in comparison to pure silk solution. The frequency sweep was employed in dynamic rheological tests to determine complex viscosity of More >

  • Open Access

    ARTICLE

    Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations

    Xinyu Zhang1, Wenjie Xia2, Yang Wang3,4, Liang Wang1,*, Xiaofeng Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3047-3061, 2024, DOI:10.32604/cmes.2023.046922

    Abstract Graphene aerogel (GA), as a novel solid material, has shown great potential in engineering applications due to its unique mechanical properties. In this study, the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics (MD) simulations. The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading. Specifically, the impact-induced penetration of the projectile leads to the collapse of the pore structure, causing stretching and subsequent rupture of covalent bonds in graphene sheets. Moreover, the effects of temperature More >

Displaying 1-10 on page 1 of 105. Per Page