Chao-Lung Yang1,*, Atinkut Atinafu Yilma1,2, Bereket Haile Woldegiorgis2, Hendrik Tampubolon3,4, Hendri Sutrisno5
Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 233-254, 2024, DOI:10.32604/iasc.2024.043091
- 21 May 2024
Abstract This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations. Since real-time production process monitoring is critical in today’s smart manufacturing. The more robust the monitoring model, the more reliable a process is to be under control. In the past, many researchers have developed real-time monitoring methods to detect process shifts early. However, these methods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties. In this paper, a robust monitoring model combining Gated Recurrent Unit (GRU) and Random… More >