Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

    Tao Yan1, Javed Rashid2,3, Muhammad Shoaib Saleem3,4, Sajjad Ahmad4, Muhammad Faheem5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2685-2708, 2024, DOI:10.32604/cmc.2024.058186 - 18 November 2024

    Abstract Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and… More >

  • Open Access

    ARTICLE

    An Efficient Long Short-Term Memory and Gated Recurrent Unit Based Smart Vessel Trajectory Prediction Using Automatic Identification System Data

    Umar Zaman1, Junaid Khan2, Eunkyu Lee1,3, Sajjad Hussain4, Awatef Salim Balobaid5, Rua Yahya Aburasain5, Kyungsup Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1789-1808, 2024, DOI:10.32604/cmc.2024.056222 - 15 October 2024

    Abstract Maritime transportation, a cornerstone of global trade, faces increasing safety challenges due to growing sea traffic volumes. This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System (AIS) data and advanced deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (DBLSTM), Simple Recurrent Neural Network (SimpleRNN), and Kalman Filtering. The research implemented rigorous AIS data preprocessing, encompassing record deduplication, noise elimination, stationary simplification, and removal of insignificant trajectories. Models were trained using key navigational parameters: latitude, longitude, speed, and heading. Spatiotemporal aware processing through trajectory segmentation… More >

  • Open Access

    ARTICLE

    GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification

    Mohammad Shoab*, Loiy Alsbatin*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.053721 - 15 October 2024

    Abstract In recent years, machine learning (ML) and deep learning (DL) have significantly advanced intrusion detection systems, effectively addressing potential malicious attacks across networks. This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things (IoT) environment, leveraging the NSL-KDD dataset. To achieve high accuracy, the authors used the feature extraction technique in combination with an auto-encoder, integrated with a gated recurrent unit (GRU). Therefore, the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization (PSO), and PSO has been employed for training the features. The More >

  • Open Access

    ARTICLE

    Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization

    Ahmad Yahiya Ahmad Bani Ahmad1, Jafar Alzubi2, Sophers James3, Vincent Omollo Nyangaresi4,5,*, Chanthirasekaran Kutralakani6, Anguraju Krishnan7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4791-4812, 2024, DOI:10.32604/cmc.2024.052771 - 12 September 2024

    Abstract In recent years, wearable devices-based Human Activity Recognition (HAR) models have received significant attention. Previously developed HAR models use hand-crafted features to recognize human activities, leading to the extraction of basic features. The images captured by wearable sensors contain advanced features, allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions. Poor lighting and limited sensor capabilities can impact data quality, making the recognition of human actions a challenging task. The unimodal-based HAR approaches are not suitable in a real-time environment. Therefore, an updated HAR model is… More >

  • Open Access

    ARTICLE

    A Hybrid Manufacturing Process Monitoring Method Using Stacked Gated Recurrent Unit and Random Forest

    Chao-Lung Yang1,*, Atinkut Atinafu Yilma1,2, Bereket Haile Woldegiorgis2, Hendrik Tampubolon3,4, Hendri Sutrisno5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 233-254, 2024, DOI:10.32604/iasc.2024.043091 - 21 May 2024

    Abstract This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations. Since real-time production process monitoring is critical in today’s smart manufacturing. The more robust the monitoring model, the more reliable a process is to be under control. In the past, many researchers have developed real-time monitoring methods to detect process shifts early. However, these methods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties. In this paper, a robust monitoring model combining Gated Recurrent Unit (GRU) and Random… More >

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol.121, No.5, pp. 1329-1346, 2024, DOI:10.32604/ee.2023.046447 - 30 April 2024

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and More >

  • Open Access

    ARTICLE

    BSTFNet: An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features

    Hong Huang1, Xingxing Zhang1,*, Ye Lu1, Ze Li1, Shaohua Zhou2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3929-3951, 2024, DOI:10.32604/cmc.2024.047918 - 26 March 2024

    Abstract While encryption technology safeguards the security of network communications, malicious traffic also uses encryption protocols to obscure its malicious behavior. To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic, we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features, called BERT-based Spatio-Temporal Features Network (BSTFNet). At the packet-level granularity, the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers (BERT)… More >

  • Open Access

    ARTICLE

    Soil NOx Emission Prediction via Recurrent Neural Networks

    Zhaoan Wang1, Shaoping Xiao1,*, Cheryl Reuben2, Qiyu Wang2, Jun Wang2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 285-297, 2023, DOI:10.32604/cmc.2023.044366 - 31 October 2023

    Abstract This paper presents designing sequence-to-sequence recurrent neural network (RNN) architectures for a novel study to predict soil NOx emissions, driven by the imperative of understanding and mitigating environmental impact. The study utilizes data collected by the Environmental Protection Agency (EPA) to develop two distinct RNN predictive models: one built upon the long-short term memory (LSTM) and the other utilizing the gated recurrent unit (GRU). These models are fed with a combination of historical and anticipated air temperature, air moisture, and NOx emissions as inputs to forecast future NOx emissions. Both LSTM and GRU models can… More >

  • Open Access

    ARTICLE

    Deep Learning Model for Big Data Classification in Apache Spark Environment

    T. M. Nithya1,*, R. Umanesan2, T. Kalavathidevi3, C. Selvarathi4, A. Kavitha5

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2537-2547, 2023, DOI:10.32604/iasc.2022.028804 - 11 September 2023

    Abstract Big data analytics is a popular research topic due to its applicability in various real time applications. The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance. Since big data involves numerous features and necessitates high computational time, feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance. This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit (SBOA-OGRU) model for big data classification in Apache Spark. More >

Displaying 1-10 on page 1 of 33. Per Page