Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells

    Yongwei Duan, Zhaopeng Zhu, Hui He*, Gaoliang Xuan, Xuemeng Yu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 349-364, 2024, DOI:10.32604/fdmp.2023.042659 - 14 December 2023

    Abstract The gas-water two-phase flow occurring as a result of fracturing fluid flowback phenomena is known to impact significantly the productivity of shale gas well. In this work, this two-phase flow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model (EDFM). This model assumes the region outside the stimulated reservoir volume (SRV) as a single-medium while the SRV region itself is described using a double-medium strategy which can account for the fluid exchange between the matrix and the micro-fractures. The shale gas adsorption, desorption, diffusion, gas slippage… More >

  • Open Access

    ARTICLE

    Simulation of Gas-Water Two-Phase Flow in Tight Gas Reservoirs Considering the Gas Slip Effect

    Mingjing Lu1,2,*, Zenglin Wang1,3, Aishan Li1, Liaoyuan Zhang1, Bintao Zheng1, Zilin Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1269-1281, 2023, DOI:10.32604/fdmp.2023.023188 - 30 November 2022

    Abstract A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated. The model can account for the gas slip effect, stress sensitivity, and high-speed non-Darcy factors. The related equations are solved in the framework of a finite element method. The results are validated against those obtained by using the commercial software CMG (Computer Modeling Group software for advanced recovery process simulation). It is shown that the proposed method is reliable. It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG. A sensitivity analysis of various control factors More >

Displaying 1-10 on page 1 of 2. Per Page