Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Influence of Ultra Fine Glass Powder on the Properties and Microstructure of Mortars

    Wei Chen*, Dingdan Liu, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 915-938, 2024, DOI:10.32604/fdmp.2024.046335 - 07 June 2024

    Abstract This study focuses on the effect of ultrafine waste glass powder on cement strength, gas permeability and pore structure. Varying contents were considered, with particle sizes ranging from 2 to 20 μm. Moreover, alkali activation was considered to ameliorate the reactivity and cementitious properties, which were assessed by using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and specific surface area pore size distribution analysis. According to the results, without the addition of alkali activators, the performance of glass powder mortar decreases as the amount of glass powder increases, affecting various aspects such as strength… More >

  • Open Access

    ARTICLE

    An Investigation into the Compressive Strength, Permeability and Microstructure of Quartzite-Rock-Sand Mortar

    Wei Chen*, Wuwen Liu, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 859-872, 2024, DOI:10.32604/fdmp.2023.029310 - 28 March 2024

    Abstract River sand is an essential component used as a fine aggregate in mortar and concrete. Due to unrestrained exploitation, river sand resources are gradually being exhausted. This requires alternative solutions. This study deals with the properties of cement mortar containing different levels of manufactured sand (MS) based on quartzite, used to replace river sand. The river sand was replaced at 20%, 40%, 60% and 80% with MS (by weight or volume). The mechanical properties, transfer properties, and microstructure were examined and compared to a control group to study the impact of the replacement level. The More >

  • Open Access

    ARTICLE

    Experimental Evaluation of Compressive Strength and Gas Permeability of Glass-Powder-Containing Mortar

    Yue Liang, Wenxuan Dai, Wei Chen*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2639-2659, 2023, DOI:10.32604/fdmp.2023.027622 - 25 June 2023

    Abstract Glass powder of various particle sizes (2, 5, 10 and 15 μm) has been assessed as a possible cement substitute for mortars. Different replacement rates of cement (5%, 10%, 15%, and 20%) have been considered for all particle sizes. The accessible porosity, compressive strength, gas permeability and microstructure have been investigated accordingly. The results have shown that adding glass powder up to 20% has a significantly negative effect on the porosity and compressive strength of mortar. The compressive strength initially rises with a 5% replacement and then decreases. Similarly, the gas permeability of the mortar displays… More >

  • Open Access

    ARTICLE

    The Effect of Different Freeze-Thaw Cycles on Mortar Gas Permeability and Pore Structure

    Wei Chen1,*, Ao Xu1, Hejun Zhang1, Mingquan Sheng1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1623-1636, 2023, DOI:10.32604/fdmp.2023.025083 - 30 January 2023

    Abstract Two different freeze-thaw cycles (FTC) are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar. These are the water-freezing/water-thawing (WF-WT) and the air-freezing/air-thawing (AF-AT) cycles. The problem is addressed experimentally through an advanced nuclear magnetic resonance (NMR) technique able to provide meaningful information on the relationships among gas permeability, pore structure, mechanical properties, and the number of cycles. It is shown that the mortar gas permeability increases with the number of FTCs, the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and More >

  • Open Access

    ARTICLE

    Effect of Dry-Wet Cycles on the Transport and Mechanical Properties of Cement Mortar Subjected to Sulfate Attack

    Wei Chen1,*, Weijie Shan1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 679-696, 2023, DOI:10.32604/fdmp.2022.021249 - 29 September 2022

    Abstract This study deals with the analysis of the detrimental effects of a “sulfate attack” on cement mortar for different dry-wet cycles. The mass loss, tensile strength, and gas permeability coefficient were determined and analyzed under different exposure conditions. At the same time, nitrogen adsorption (NAD), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were used to analyze the corresponding variations in the microstructure and the corrosion products. The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to More >

Displaying 1-10 on page 1 of 5. Per Page