Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    A Region-Aware Deep Learning Model for Dual-Subject Gait Recognition in Occluded Surveillance Scenarios

    Zeeshan Ali1, Jihoon Moon2, Saira Gillani3, Sitara Afzal4, Maryam Bukhari5, Seungmin Rho6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2263-2286, 2025, DOI:10.32604/cmes.2025.067743 - 31 August 2025

    Abstract Surveillance systems can take various forms, but gait-based surveillance is emerging as a powerful approach due to its ability to identify individuals without requiring their cooperation. In the existing studies, several approaches have been suggested for gait recognition; nevertheless, the performance of existing systems is often degraded in real-world conditions due to covariate factors such as occlusions, clothing changes, walking speed, and varying camera viewpoints. Furthermore, most existing research focuses on single-person gait recognition; however, counting, tracking, detecting, and recognizing individuals in dual-subject settings with occlusions remains a challenging task. Therefore, this research proposed a… More >

  • Open Access

    REVIEW

    Gait Planning, and Motion Control Methods for Quadruped Robots: Achieving High Environmental Adaptability: A Review

    Sheng Dong*, Feihu Fan, Yinuo Chen, Shangpeng Guo, Jiayu Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1-50, 2025, DOI:10.32604/cmes.2025.062113 - 11 April 2025

    Abstract Legged robots have always been a focal point of research for scholars domestically and internationally. Compared to other types of robots, quadruped robots exhibit superior balance and stability, enabling them to adapt effectively to diverse environments and traverse rugged terrains. This makes them well-suited for applications such as search and rescue, exploration, and transportation, with strong environmental adaptability, high flexibility, and broad application prospects. This paper discusses the current state of research on quadruped robots in terms of development status, gait trajectory planning methods, motion control strategies, reinforcement learning applications, and control algorithm integration. It More >

  • Open Access

    ARTICLE

    Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network

    Yuxiang Zou1, Ning He2,*, Jiwu Sun1, Xunrui Huang1, Wenhua Wang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1255-1276, 2025, DOI:10.32604/cmc.2024.055732 - 03 January 2025

    Abstract In recent years, gait-based emotion recognition has been widely applied in the field of computer vision. However, existing gait emotion recognition methods typically rely on complete human skeleton data, and their accuracy significantly declines when the data is occluded. To enhance the accuracy of gait emotion recognition under occlusion, this paper proposes a Multi-scale Suppression Graph Convolutional Network (MS-GCN). The MS-GCN consists of three main components: Joint Interpolation Module (JI Moudle), Multi-scale Temporal Convolution Network (MS-TCN), and Suppression Graph Convolutional Network (SGCN). The JI Module completes the spatially occluded skeletal joints using the (K-Nearest Neighbors)… More >

  • Open Access

    ARTICLE

    Personalized Lower Limb Gait Reconstruction Modeling Based on RFA-ProMP

    Chunhong Zeng, Kang Lu, Zhiqin He*, Qinmu Wu

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1441-1456, 2024, DOI:10.32604/cmc.2024.051551 - 18 July 2024

    Abstract Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients. The article utilizes the random forest algorithm to construct a gait parameter model, which maps the relationship between parameters such as height, weight, age, gender, and gait speed, achieving prediction of key points on the gait curve. To enhance prediction accuracy, an attention mechanism is introduced into the algorithm to focus more on the main features. Meanwhile, to ensure high similarity between the reconstructed gait curve and the normal one, More >

  • Open Access

    ARTICLE

    A Novel 3D Gait Model for Subject Identification Robust against Carrying and Dressing Variations

    Jian Luo1,*, Bo Xu1, Tardi Tjahjadi2, Jian Yi1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 235-261, 2024, DOI:10.32604/cmc.2024.050018 - 18 July 2024

    Abstract Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing conditions in real-life scenes. This paper proposes a novel targeted 3-dimensional (3D) gait model (3DGait) represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model. The 3DGait descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and dressing. The 3DGait recognition method involves 2-dimensional (2D) to 3DGait data learning based on 3D virtual samples, a semantic gait parameter estimation Long Short Time Memory (LSTM) network (3D-SGPE-LSTM), a feature fusion… More >

  • Open Access

    ARTICLE

    Human Gait Recognition for Biometrics Application Based on Deep Learning Fusion Assisted Framework

    Ch Avais Hanif1, Muhammad Ali Mughal1, Muhammad Attique Khan2,3,*, Nouf Abdullah Almujally4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 357-374, 2024, DOI:10.32604/cmc.2023.043061 - 30 January 2024

    Abstract The demand for a non-contact biometric approach for candidate identification has grown over the past ten years. Based on the most important biometric application, human gait analysis is a significant research topic in computer vision. Researchers have paid a lot of attention to gait recognition, specifically the identification of people based on their walking patterns, due to its potential to correctly identify people far away. Gait recognition systems have been used in a variety of applications, including security, medical examinations, identity management, and access control. These systems require a complex combination of technical, operational, and… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Hand Gesture Recognition: Applications in Deaf Communication and Healthcare

    Khursheed Aurangzeb1, Khalid Javeed2, Musaed Alhussein1, Imad Rida3, Syed Irtaza Haider1, Anubha Parashar4,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 127-144, 2024, DOI:10.32604/cmc.2023.042886 - 30 January 2024

    Abstract Hand gestures have been used as a significant mode of communication since the advent of human civilization. By facilitating human-computer interaction (HCI), hand gesture recognition (HGRoc) technology is crucial for seamless and error-free HCI. HGRoc technology is pivotal in healthcare and communication for the deaf community. Despite significant advancements in computer vision-based gesture recognition for language understanding, two considerable challenges persist in this field: (a) limited and common gestures are considered, (b) processing multiple channels of information across a network takes huge computational time during discriminative feature extraction. Therefore, a novel hand vision-based convolutional neural network… More >

  • Open Access

    ARTICLE

    3-D Gait Identification Utilizing Latent Canonical Covariates Consisting of Gait Features

    Ramiz Gorkem Birdal*, Ahmet Sertbas

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2727-2744, 2023, DOI:10.32604/cmc.2023.032069 - 08 October 2023

    Abstract Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’ walking patterns to be recognized. Existing research in this area has primarily focused on feature analysis through the extraction of individual features, which captures most of the information but fails to capture subtle variations in gait dynamics. Therefore, a novel feature taxonomy and an approach for deriving a relationship between a function of one set of gait features with another set are introduced. The gait features extracted from body halves divided by anatomical planes on vertical, horizontal, and diagonal… More >

  • Open Access

    ARTICLE

    Research on Freezing of Gait Recognition Method Based on Variational Mode Decomposition

    Shoutao Li1,2,*, Ruyi Qu1, Yu Zhang1, Dingli Yu3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2809-2823, 2023, DOI:10.32604/iasc.2023.036999 - 11 September 2023

    Abstract Freezing of Gait (FOG) is the most common and disabling gait disorder in patients with Parkinson’s Disease (PD), which seriously affects the life quality and social function of patients. This paper proposes a FOG recognition method based on the Variational Mode Decomposition (VMD). Firstly, VMD instead of the traditional time-frequency analysis method to complete adaptive decomposition to the FOG signal. Secondly, to improve the accuracy and speed of the recognition algorithm, use the CART model as the base classifier and perform the feature dimension reduction. Then use the RUSBoost ensemble algorithm to solve the problem… More >

  • Open Access

    ARTICLE

    A Triplet-Branch Convolutional Neural Network for Part-Based Gait Recognition

    Sang-Soo Yeo1, Seungmin Rho2,*, Hyungjoon Kim3, Jibran Safdar4, Umar Zia5, Mehr Yahya Durrani5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2027-2047, 2023, DOI:10.32604/csse.2023.040327 - 28 July 2023

    Abstract Intelligent vision-based surveillance systems are designed to deal with the gigantic volume of videos captured in a particular environment to perform the interpretation of scenes in form of detection, tracking, monitoring, behavioral analysis, and retrievals. In addition to that, another evolving way of surveillance systems in a particular environment is human gait-based surveillance. In the existing research, several methodological frameworks are designed to use deep learning and traditional methods, nevertheless, the accuracies of these methods drop substantially when they are subjected to covariate conditions. These covariate variables disrupt the gait features and hence the recognition… More >

Displaying 1-10 on page 1 of 32. Per Page