Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making

    Zhe Liu1,2,3,*, Sijia Zhu4, Yulong Huang1,*, Tapan Senapati5,6,7, Xiangyu Li8, Wulfran Fendzi Mbasso9, Himanshu Dhumras10, Mehdi Hosseinzadeh11,12,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025

    Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >

  • Open Access

    ARTICLE

    Urban Transportation Strategy Selection for Multi-Criteria Group Decision-Making Using Pythagorean Fuzzy N-Bipolar Soft Expert Sets

    Sagvan Y. Musa1,2, Zanyar A. Ameen3,*, Wafa Alagal4, Baravan A. Asaad5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3493-3529, 2025, DOI:10.32604/cmes.2025.070019 - 30 September 2025

    Abstract Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility, cost-effectiveness, and environmental impact, often under uncertainty and incomplete information. These complex decisions require input from various stakeholders, including planners, policymakers, engineers, and community representatives, whose opinions may differ or contradict. Traditional decision-making approaches struggle to effectively handle such bipolar and multivalued expert evaluations. To address these challenges, we propose a novel decision-making framework based on Pythagorean fuzzy N-bipolar soft expert sets. This model allows experts to express both positive and negative opinions on a multinary scale, capturing nuanced judgments with higher accuracy. It… More >

  • Open Access

    ARTICLE

    An Improved Interval-Valued Picture Fuzzy TOPSIS Approach Based on New Divergence Measures for Risk Assessment

    Sijia Zhu1, Yuhan Li2, Prasanalakshmi Balaji3,*, Akila Thiyagarajan3, Rajanikanth Aluvalu4, Zhe Liu5,6,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2099-2121, 2025, DOI:10.32604/cmes.2025.068734 - 31 August 2025

    Abstract While interval-valued picture fuzzy sets (IvPFSs) provide a powerful tool for modeling uncertainty and ambiguity in various fields, existing divergence measures for IvPFSs remain limited and often produce counterintuitive results. To address these shortcomings, this paper introduces two novel divergence measures for IvPFSs, inspired by the Jensen-Shannon divergence. The fundamental properties of the proposed measures—non-degeneracy, symmetry, triangular inequality, and boundedness—are rigorously proven. Comparative analyses with existing measures are conducted through specific cases and numerical examples, clearly demonstrating the advantages of our approach. Furthermore, we apply the new divergence measures to develop an enhanced interval-valued picture More >

  • Open Access

    ARTICLE

    Innovative Aczel Alsina Group Overlap Functions for AI-Based Criminal Justice Policy Selection under Intuitionistic Fuzzy Set

    Ikhtesham Ullah1, Muhammad Sajjad Ali Khan2, Fawad Hussain1, Madad Khan3, Kamran4,*, Ioan-Lucian Popa5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2123-2164, 2025, DOI:10.32604/cmes.2025.064832 - 31 August 2025

    Abstract Multi-criteria decision-making (MCDM) is essential for handling complex decision problems under uncertainty, especially in fields such as criminal justice, healthcare, and environmental management. Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved. To address this issue, we propose a novel framework that integrates group and overlap functions with Aczel-Alsina (AA) operational laws in the intuitionistic fuzzy set (IFS) environment. Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments, while the… More >

  • Open Access

    ARTICLE

    Classification of Cyber Threat Detection Techniques for Next-Generation Cyber Defense via Hesitant Bipolar Fuzzy Frank Information

    Hafiz Muhammad Waqas1, Tahir Mahmood1,2, Walid Emam3, Ubaid ur Rehman4, Dragan Pamucar5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4699-4727, 2025, DOI:10.32604/cmc.2025.065011 - 30 July 2025

    Abstract Cyber threat detection is a crucial aspect of contemporary cybersecurity due to the depth and complexity of cyberattacks. It is the identification of malicious activity, unauthorized access, and possible intrusions in networks and systems. Modern detection methods employ artificial intelligence and machine learning to study vast amounts of data, learn patterns, and anticipate potential threats. Real-time monitoring and anomaly detection improve the capacity to react to changing threats more rapidly. Cyber threat detection systems aim to reduce false positives and provide complete coverage against the broadest possible attacks. This research advocates for proactive measures and… More >

  • Open Access

    ARTICLE

    Promoting Tailored Hotel Recommendations Based on Traveller Preferences: A Circular Intuitionistic Fuzzy Decision Support Model

    Sana Shahab1, Ibtehal Alazman2, Ashit Kumar Dutta3, Mohd Anjum4, Vladimir Simic5,6,7,*, Željko Stević8, Nouf Abdulrahman Alqahtani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2155-2183, 2025, DOI:10.32604/cmes.2025.064553 - 30 May 2025

    Abstract With the increasing complexity of hotel selection, traditional decision-making models often struggle to account for uncertainty and interrelated criteria. Multi-criteria decision-making (MCDM) techniques, particularly those based on fuzzy logic, provide a robust framework for handling such challenges. This paper presents a novel approach to MCDM within the framework of Circular Intuitionistic Fuzzy Sets (C-IFS) by combining three distinct methodologies: Weighted Aggregated Sum Product Assessment (WASPAS), an Alternative Ranking Order Method Accounting for Two-Step Normalization (AROMAN), and the CRITIC method (Criteria Importance Through Intercriteria Correlation). To address the dynamic nature of traveler preferences in hotel selection,… More >

  • Open Access

    ARTICLE

    Development of AHP-Based Divergence Distance Measure between –Spherical Fuzzy Sets with Applications in Multi-Criteria Decision Making

    Shah Zeb Khan1, Muhammad Rahim2, Adel M. Widyan3,*, A. Almutairi3, Njood Shaher Ethaar Almutire3, Hamiden Abd El-Wahed Khalifa3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2185-2211, 2025, DOI:10.32604/cmes.2025.063929 - 30 May 2025

    Abstract This study introduces a novel distance measure (DM) for spherical fuzzy sets (SFSs) to improve decision-making in complex and uncertain environments. Many existing distance measures either fail to satisfy essential axiomatic properties or produce unintuitive outcomes. To address these limitations, we propose a new three-dimensional divergence-based DM that ensures mathematical consistency, enhances the discrimination of information, and adheres to the axiomatic framework of distance theory. Building on this foundation, we construct a multi-criteria decision-making (MCDM) model that utilizes the proposed DM to evaluate and rank alternatives effectively. The applicability and robustness of the model are More >

  • Open Access

    ARTICLE

    Multi-View Picture Fuzzy Clustering: A Novel Method for Partitioning Multi-View Relational Data

    Pham Huy Thong1, Hoang Thi Canh2,3,*, Luong Thi Hong Lan4, Nguyen Tuan Huy4, Nguyen Long Giang1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5461-5485, 2025, DOI:10.32604/cmc.2025.065127 - 19 May 2025

    Abstract Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex, high-dimensional data that single-view methods cannot capture. Traditional fuzzy clustering techniques, such as Fuzzy C-Means (FCM), face significant challenges in handling uncertainty and the dependencies between different views. To overcome these limitations, we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data, aiming to enhance clustering accuracy and robustness, termed Multi-view Picture Fuzzy Clustering (MPFC). In particular, the picture fuzzy set theory extends the capability to… More >

  • Open Access

    ARTICLE

    Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets, Aggregation Operators and Basic Uncertainty Information Granule

    Anastasios Dounis*, Ioannis Palaiothodoros, Anna Panagiotou

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 759-811, 2025, DOI:10.32604/cmes.2024.057888 - 17 December 2024

    Abstract Accurate medical diagnosis, which involves identifying diseases based on patient symptoms, is often hindered by uncertainties in data interpretation and retrieval. Advanced fuzzy set theories have emerged as effective tools to address these challenges. In this paper, new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets (q-ROFS) and interval-valued q-rung orthopair fuzzy sets (IVq-ROFS). Three aggregation operators are proposed in our methodologies: the q-ROF weighted averaging (q-ROFWA), the q-ROF weighted geometric (q-ROFWG), and the q-ROF weighted neutrality averaging (q-ROFWNA), which enhance decision-making under uncertainty. These operators are paired More > Graphic Abstract

    Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets, Aggregation Operators and Basic Uncertainty Information Granule

  • Open Access

    ARTICLE

    Fuzzy Multi-Criteria Decision Support System for the Best Anti-Aging Treatment Selection Process through Normal Wiggly Hesitant Fuzzy Sets

    Daekook Kang1, Ramya Lakshmanaraj2, Samayan Narayanamoorthy2, Navaneethakrishnan Suganthi Keerthana Devi2, Samayan Kalaiselvan3, Ranganathan Saraswathy4, Dragan Pamucar5,6,7,*, Vladimir Simic8,9

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4947-4972, 2024, DOI:10.32604/cmc.2024.055260 - 12 September 2024

    Abstract This socialized environment among educated and developed people causes them to focus more on their appearance and health, which turns them towards medical-related treatments, leading us to discuss anti-aging treatment methods for each age group, particularly for urban people who are interested in this. Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects. Five anti-aging therapies such as microdermabrasion or dermabrasion, laser resurfacing anti-aging skin treatments, chemical peels, dermal fillers for aged skin, and botox injections are considered in this… More >

Displaying 1-10 on page 1 of 36. Per Page