Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (589)
  • Open Access

    ARTICLE

    A Parallelized Grey Wolf Optimizer-Based Fuzzy C-Means for Fast and Accurate MRI Segmentation on GPU

    Mohammed Debakla1,*, Ali Mezaghrani1, Khalifa Djemal2, Imane Zouaneb1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071927 - 09 December 2025

    Abstract Magnetic Resonance Imaging (MRI) has a pivotal role in medical image analysis, for its ability in supporting disease detection and diagnosis. Fuzzy C-Means (FCM) clustering is widely used for MRI segmentation due to its ability to handle image uncertainty. However, the latter still has countless limitations, including sensitivity to initialization, susceptibility to local optima, and high computational cost. To address these limitations, this study integrates Grey Wolf Optimization (GWO) with FCM to enhance cluster center selection, improving segmentation accuracy and robustness. Moreover, to further refine optimization, Fuzzy Entropy Clustering was utilized for its distinctive features… More >

  • Open Access

    ARTICLE

    Searchable Attribute-Based Encryption with Multi-Keyword Fuzzy Matching for Cloud-Based IoT

    He Duan, Shi Zhang*, Dayu Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069628 - 09 December 2025

    Abstract Internet of Things (IoT) interconnects devices via network protocols to enable intelligent sensing and control. Resource-constrained IoT devices rely on cloud servers for data storage and processing. However, this cloud-assisted architecture faces two critical challenges: the untrusted cloud services and the separation of data ownership from control. Although Attribute-based Searchable Encryption (ABSE) provides fine-grained access control and keyword search over encrypted data, existing schemes lack of error tolerance in exact multi-keyword matching. In this paper, we proposed an attribute-based multi-keyword fuzzy searchable encryption with forward ciphertext search (FCS-ABMSE) scheme that avoids computationally expensive bilinear pairing… More >

  • Open Access

    ARTICLE

    Neuro-Fuzzy Computational Dynamics of Reactive Hybrid Nanofluid Flow Inside a Squarely Elevated Riga Tunnel with Ramped Thermo-Solutal Conditions under Strong Electromagnetic Rotation

    Asgar Ali1,*, Nayan Sardar2, Poly Karmakar3, Sanatan Das4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3563-3626, 2025, DOI:10.32604/cmes.2025.074082 - 23 December 2025

    Abstract Hybrid nanofluids have gained significant attention for their superior thermal and rheological characteristics, offering immense potential in energy conversion, biomedical transport, and electromagnetic flow control systems. Understanding their dynamic behavior under coupled magnetic, rotational, and reactive effects is crucial for the development of efficient thermal management technologies. This study develops a neuro-fuzzy computational framework to examine the dynamics of a reactive Cu–TiO2–H2O hybrid nanofluid flowing through a squarely elevated Riga tunnel. The governing model incorporates Hall and ion-slip effects, thermal radiation, and first-order chemical reactions under ramped thermo-solutal boundary conditions and rotational electromagnetic forces. Closed-form analytical… More >

  • Open Access

    ARTICLE

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

    Rebhi M’hamed1,*, Himri Youcef2,3,*, Bouchiba Bousmaha1, Yaichi Mouaadh1

    Energy Engineering, Vol.122, No.12, pp. 4899-4918, 2025, DOI:10.32604/ee.2025.070806 - 27 November 2025

    Abstract Currently, most conventional street lighting systems use a constant light mode throughout the entire night, from sunset to sunrise, which results in high energy consumption and maintenance costs. Furthermore, scientific research predicts that energy consumption for street lighting will increase in the coming years due to growing demand and rising electricity prices. The dimming strategy is a current trend and a key concept in smart street lighting systems. It involves turning on the road lights only when a vehicle or pedestrian is detected; otherwise, the control system reduces the light intensity of the lamps. Power… More > Graphic Abstract

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

  • Open Access

    ARTICLE

    A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making

    Zhe Liu1,2,3,*, Sijia Zhu4, Yulong Huang1,*, Tapan Senapati5,6,7, Xiangyu Li8, Wulfran Fendzi Mbasso9, Himanshu Dhumras10, Mehdi Hosseinzadeh11,12,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025

    Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >

  • Open Access

    ARTICLE

    Dombi Power Aggregation-Based Decision Framework for Smart City Initiative Prioritization under t-Arbicular Fuzzy Environment

    Jawad Ali1,*, Ioan-Lucian Popa2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 857-889, 2025, DOI:10.32604/cmes.2025.064604 - 30 October 2025

    Abstract With the rapid growth of urbanization, smart city development has become a strategic priority worldwide, requiring complex and uncertain decision-making processes. In this context, advanced decision-support tools are essential to evaluate and prioritize competing initiatives effectively. To support effective prioritization of smart city initiatives under uncertainty, this study introduces a robust decision-making framework based on the t-arbicular fuzzy (t-AF) set—a recent extension of the t-spherical fuzzy set that incorporates an additional parameter, the radius , to enhance the representation of uncertainty. Dombi-based operational laws are formulated within this context, leading to the development of four… More >

  • Open Access

    ARTICLE

    An Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5625-5642, 2025, DOI:10.32604/cmc.2025.069636 - 23 October 2025

    Abstract Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance. This method effectively integrates prior knowledge using pre-labeled data. While semi-supervised fuzzy clustering (SSFC) methods leverage limited labeled data to enhance accuracy, they remain highly susceptible to inappropriate or mislabeled prior knowledge, especially in noisy or overlapping datasets where cluster boundaries are ambiguous. To enhance the effectiveness of clustering algorithms, it is essential to leverage labeled data while ensuring the safety of the previous knowledge. Existing solutions, such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method (TS3FCM),… More >

  • Open Access

    ARTICLE

    An Innovative Semi-Supervised Fuzzy Clustering Technique Using Cluster Boundaries

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5341-5357, 2025, DOI:10.32604/cmc.2025.068299 - 23 October 2025

    Abstract Active semi-supervised fuzzy clustering integrates fuzzy clustering techniques with limited labeled data, guided by active learning, to enhance classification accuracy, particularly in complex and ambiguous datasets. Although several active semi-supervised fuzzy clustering methods have been developed previously, they typically face significant limitations, including high computational complexity, sensitivity to initial cluster centroids, and difficulties in accurately managing boundary clusters where data points often overlap among multiple clusters. This study introduces a novel Active Semi-Supervised Fuzzy Clustering algorithm specifically designed to identify, analyze, and correct misclassified boundary elements. By strategically utilizing labeled data through active learning, our More >

  • Open Access

    ARTICLE

    Modified Watermarking Scheme Using Informed Embedding and Fuzzy c-Means–Based Informed Coding

    Jyun-Jie Wang1, Yin-Chen Lin1, Chi-Chun Chen2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5595-5624, 2025, DOI:10.32604/cmc.2025.066160 - 23 October 2025

    Abstract Digital watermarking must balance imperceptibility, robustness, complexity, and security. To address the challenge of computational efficiency in trellis-based informed embedding, we propose a modified watermarking framework that integrates fuzzy c-means (FCM) clustering into the generation off block codewords for labeling trellis arcs. The system incorporates a parallel trellis structure, controllable embedding parameters, and a novel informed embedding algorithm with reduced complexity. Two types of embedding schemes—memoryless and memory-based—are designed to flexibly trade-off between imperceptibility and robustness. Experimental results demonstrate that the proposed method outperforms existing approaches in bit error rate (BER) and computational complexity under More >

  • Open Access

    ARTICLE

    Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data

    Zhe Liu1,2,*, Jiahao Shi3, Dania Santina4, Yulong Huang1, Nabil Mlaiki4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3531-3555, 2025, DOI:10.32604/cmes.2025.071145 - 30 September 2025

    Abstract The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations. However, traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data, as they rely on a single-dimensional membership value. To overcome these limitations, we propose an auto-weighted multi-view neutrosophic fuzzy clustering (AW-MVNFC) algorithm. Our method leverages the neutrosophic framework, an extension of fuzzy sets, to explicitly model imprecision and ambiguity through three membership degrees. The core novelty of AW-MVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions More >

Displaying 1-10 on page 1 of 589. Per Page