Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Hierarchical Two-Level Feature Fusion Approach for SMS Spam Filtering

    Hussein Alaa Al-Kabbi1,2, Mohammad-Reza Feizi-Derakhshi1,*, Saeed Pashazadeh3

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 665-682, 2024, DOI:10.32604/iasc.2024.050452 - 06 September 2024

    Abstract SMS spam poses a significant challenge to maintaining user privacy and security. Recently, spammers have employed fraudulent writing styles to bypass spam detection systems. This paper introduces a novel two-level detection system that utilizes deep learning techniques for effective spam identification to address the challenge of sophisticated SMS spam. The system comprises five steps, beginning with the preprocessing of SMS data. RoBERTa word embedding is then applied to convert text into a numerical format for deep learning analysis. Feature extraction is performed using a Convolutional Neural Network (CNN) for word-level analysis and a Bidirectional Long… More >

  • Open Access

    ARTICLE

    Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach

    Fatma Taher1, Hamoud Alshammari2, Lobna Osman3, Mohamed Elhoseny4, Abdulaziz Shehab5,2,*, Eman Elayat6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4485-4499, 2023, DOI:10.32604/cmc.2023.036118 - 31 March 2023

    Abstract Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia.… More >

  • Open Access

    ARTICLE

    Deep Bimodal Fusion Approach for Apparent Personality Analysis

    Saman Riaz1, Ali Arshad2, Shahab S. Band3,*, Amir Mosavi4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2301-2312, 2023, DOI:10.32604/cmc.2023.028333 - 06 February 2023

    Abstract Personality distinguishes individuals’ patterns of feeling, thinking, and behaving. Predicting personality from small video series is an exciting research area in computer vision. The majority of the existing research concludes preliminary results to get immense knowledge from visual and Audio (sound) modality. To overcome the deficiency, we proposed the Deep Bimodal Fusion (DBF) approach to predict five traits of personality-agreeableness, extraversion, openness, conscientiousness and neuroticism. In the proposed framework, regarding visual modality, the modified convolution neural networks (CNN), more specifically Descriptor Aggregator Model (DAN) are used to attain significant visual modality. The proposed model extracts More >

Displaying 1-10 on page 1 of 3. Per Page