Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Simulation of Temperature Field in Oil-Based Drill Cuttings Pyrolysis Furnace for Shale Gas

    Pu Liu, Guangwei Bai*, Wei Li, Chuanhua Ge

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1847-1864, 2025, DOI:10.32604/fhmt.2025.070378 - 31 December 2025

    Abstract To address the issue of uneven temperature distribution in shale gas oil-based drill cuttings pyrolysis furnaces, a numerical model was developed using Fluent software. The effects of nitrogen flow rate, heating tube spacing, and furnace dimensions on the internal temperature field were thoroughly analyzed from a mechanistic perspective. The results indicated that non-uniform radiation from the heating tubes and flow disturbances induced by the nitrogen stream were the primary causes of localized heat concentration. Under no-load conditions, the maximum deviation between simulated and on-site measured temperatures was 1.5%, validating the model’s accuracy. Furthermore, this study More >

  • Open Access

    ARTICLE

    Multiphysics Simulation of Flow and Heat Transfer in Titanium Slag Smelting within an Electric Arc Furnace

    Yifan Wang1, Shan Qing1,2,*, Jifan Li1,3,*, Xiaohui Zhang1,3, Junxiao Wang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2253-2272, 2025, DOI:10.32604/fdmp.2025.067429 - 30 September 2025

    Abstract Heat and mass transfer within an electric arc furnace are strongly influenced by extreme temperatures and complex electromagnetic fields. Variations in temperature distribution play a crucial role in determining melt flow patterns and in the formation of stagnant regions, commonly referred to as dead zones. To better understand the internal flow dynamics and thermal behavior of the furnace, this study develops a multiphysics coupled model that integrates fluid heat transfer with Maxwell’s electromagnetic field equations. Numerical simulations are conducted to systematically examine how key operational parameters, such as electric current and arc characteristics, affect the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Atomization Process for Blast Furnace Slag Granulation

    Li-Li Wang*, Hong-Xing Qin, Nan Dong

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1489-1503, 2025, DOI:10.32604/fdmp.2025.061154 - 30 June 2025

    Abstract The so-called close-coupled gas atomization process involves melting a metal and using a high-pressure gas jet positioned close to the melt stream to rapidly break it into fine, spherical powder particles. This technique, adapted for blast furnace slag granulation using a circular seam nozzle, typically aims to produce solid slag particles sized 30–140 µm, thereby allowing the utilization of slag as a resource. This study explores the atomization dynamics of liquid blast furnace slag, focusing on the effects of atomization pressure. Primary atomization is simulated using a combination of the Volume of Fluid (VOF) method… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

    Teng Xia1,2, Xiaohui Zhang1,2,*, Ding Ma1,2, Zhi Yang1,2, Xinting Tong3, Yutang Zhao4, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 121-140, 2025, DOI:10.32604/fdmp.2025.058683 - 24 January 2025

    Abstract Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy. With this approach, feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphase flow within the furnace. Understanding the flow structure and temperature distribution in this setup is crucial for optimizing production. In this study, gas-liquid interactions, and temperature profiles under varying air-injection conditions are examined by means of numerical simulation for a 3.2 m × 20 m furnace. The results indicate that the high-velocity regions are essentially distributed near the lance within the… More > Graphic Abstract

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

  • Open Access

    ARTICLE

    Numerical Simulation of Heat Transfer Process and Heat Loss Analysis in Siemens CVD Reduction Furnaces

    Kunrong Shen*, Wanchun Jin, Jin Wang

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1361-1379, 2024, DOI:10.32604/fhmt.2024.057372 - 30 October 2024

    Abstract The modified Siemens method is the dominant process for the production of polysilicon, yet it is characterised by high energy consumption. Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition (CVD) reduction furnace were established, and the effects of factors such as the diameter of silicon rods, the surface temperature of silicon rods, the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation. The results show that the convective and radiant heat losses in the furnace increased… More >

  • Open Access

    ARTICLE

    Effect of Lightweight Aggregates Incorporation on the Mechanical Properties and Shrinkage Compensation of a Cement-Ground Granulated Blast Furnace Slag-Phosphogypsum Ternary System

    Yu Wang1,2, Mengyang Ma1,2,*, Yong Long1,2, Qingxiang Zhao1,2, Zhifei Cheng1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1773-1784, 2024, DOI:10.32604/fdmp.2024.048695 - 06 August 2024

    Abstract Shrinkage-induced cracking is a common issue in concrete structures, where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength. In this study, the effect of ceramsite sand addition on the properties of a ternary system of cement-ground granulated blast furnace slag (GGBFS)-phosphogypsum (PG) is investigated. In particular, the fluidity, rheology, hydration heat, compressive strength, autogenous shrinkage, and drying shrinkage of the considered mortar specimens are analyzed. The results indicate that an increase in PG content leads to a decrease in fluidity, higher viscosity, lower More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Oxygen Enrichment in the Blast on Temperature Field and NO Generation near the Burner in Reheating Furnace

    Xiaojun Li, Fuyong Su*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 719-732, 2024, DOI:10.32604/fhmt.2024.051950 - 11 July 2024

    Abstract In order to study the effect of oxygen-enriched combustion technology on the temperature field and NO emission in the continuous heating furnace, this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company. This study utilizes numerical simulation method, establishes the mathematical models of flow, combustion and NO generation combustion process in the furnace and analyzes the heat transfer process and NO generation in the furnace under different air oxygen content and different wind ratio. The research results show that with the increase of oxygen content in the air, More > Graphic Abstract

    Analysis of the Influence of Oxygen Enrichment in the Blast on Temperature Field and NO Generation near the Burner in Reheating Furnace

  • Open Access

    ARTICLE

    Research and Application of a Multi-Field Co-Simulation Data Extraction Method Based on Adaptive Infinitesimal Element

    Changfu Wan1,2, Wenqiang Li1,2,*, Sitong Ling1,2, Yingdong Liu1,2, Jiahao Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 321-348, 2024, DOI:10.32604/cmes.2023.029053 - 22 September 2023

    Abstract Regarding the spatial profile extraction method of a multi-field co-simulation dataset, different extraction directions, locations, and numbers of profiles will greatly affect the representativeness and integrity of data. In this study, a multi-field co-simulation data extraction method based on adaptive infinitesimal elements is proposed. The multi-field co-simulation dataset based on related infinitesimal elements is constructed, and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction. Based on the fireworks algorithm, the data profile with optimal representativeness is searched adaptively in different data extraction… More > Graphic Abstract

    Research and Application of a Multi-Field Co-Simulation Data Extraction Method Based on Adaptive Infinitesimal Element

  • Open Access

    ARTICLE

    Numerical Simulation of Heat Transfer of High-Temperature Slag Flow Inside the Blast Furnace Slag Trench

    Guangyan Fan, Fuyong Su*, Cunwang Li, Bin Li

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 281-292, 2023, DOI:10.32604/fhmt.2023.043221 - 30 November 2023

    Abstract To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged, a three-dimensional physical model is established and simulated according to the actual size of the slag trench and the physical properties of the high-temperature slag. The temperature fied and flow field distribution of the high-temperature slag liquid inside the slag trench is obtained by numerical simulation under different working conditions, and the effects of operating conditions such as slag trench inclination, high-temperature slag inlet flow rate, and inlet temperature are investigated. The results show… More >

  • Open Access

    PROCEEDINGS

    Simulation of Reheating Furnace for Steel Billets by a Meshless Method

    Qingguo Liu1,2, Umut Hanoglu1,2, Božidar Šarler1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09609

    Abstract A simulation of reheating furnace in a steel production line where the steel billets are heated from room temperature up to 1200 ˚C, is carried out using a novel meshless solution procedure. The reheating of the steel billets before the continuous hot-rolling process should be employed to dissolve alloying elements as much as possible and redistribute the carbon. In this work, governing equations are solved by the local radial basis function collocation method (LRBFCM) in a strong form with explicit time-stepping. The solution of the diffusion equations for the temperature and carbon concentration fields is… More >

Displaying 1-10 on page 1 of 39. Per Page