Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis

    Yin Liang1,*, Gaoxu Xu1, Sadaqat ur Rehman2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4645-4661, 2022, DOI:10.32604/cmc.2022.026999 - 21 April 2022

    Abstract Whole brain functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used in the diagnosis of brain disorders such as autism spectrum disorder (ASD). Recently, an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification. However, the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification. In this paper, we proposed a multi-scale attention-based deep neural network (MSA-DNN) model to classify FC… More >

  • Open Access

    ARTICLE

    Multilayer Functional Connectome Fingerprints: Individual Identification via Multimodal Convolutional Neural Network

    Yuhao Chen1, Jiajun Liu1, Yaxi Peng1, Ziyi Liu2, Zhipeng Yang1,*

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1501-1516, 2022, DOI:10.32604/iasc.2022.026346 - 24 March 2022

    Abstract As a neural fingerprint, functional connectivity networks (FCNs) have been used to identify subjects from group. However, a number of studies have only paid attention to cerebral cortex when constructing the brain FCN. Other areas of the brain also play important roles in brain activities. It is widely accepted that the human brain is composed of many highly complex functional networks of cortex. Moreover, recent studies have confirmed correlations between signals of cortex and white matter (WM) bundles. Therefore, it is difficult to reflect the functional characteristics of the brain through a single-layer FCN. In… More >

  • Open Access

    ARTICLE

    Exploring the Abnormal Brain Regions and Abnormal Functional Connections in SZ by Multiple Hypothesis Testing Techniques

    Lan Yang1, Shun Qi2,3,#, Chen Qiao1,*, Yanmei Kang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 215-237, 2020, DOI:10.32604/cmes.2020.010796 - 18 September 2020

    Abstract Schizophrenia (SZ) is one of the most common mental diseases. Its main characteristics are abnormal social behavior and inability to correctly understand real things. In recent years, the magnetic resonance imaging (MRI) technique has been popularly utilized to study SZ. However, it is still a great challenge to reveal the essential information contained in the MRI data. In this paper, we proposed a biomarker selection approach based on the multiple hypothesis testing techniques to explore the difference between SZ and healthy controls by using both functional and structural MRI data, in which biomarkers represent both… More >

  • Open Access

    ARTICLE

    Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization

    Zhuqing Jiao1, *, Yixin Ji1, Tingxuan Jiao1, Shuihua Wang2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 845-871, 2020, DOI:10.32604/cmes.2020.08999 - 01 May 2020

    Abstract Currently, functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders. If one brain disease just manifests as some cognitive dysfunction, it means that the disease may affect some local connectivity in the brain functional network. That is, there are functional abnormalities in the sub-network. Therefore, it is crucial to accurately identify them in pathological diagnosis. To solve these problems, we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization (GNMF). The dynamic functional networks of normal subjects and early mild cognitive impairment (eMCI) subjects were… More >

Displaying 1-10 on page 1 of 4. Per Page