Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Probability-Enhanced Anchor-Free Detector for Remote-Sensing Object Detection

    Chengcheng Fan1,2,*, Zhiruo Fang3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4925-4943, 2024, DOI:10.32604/cmc.2024.049710 - 20 June 2024

    Abstract Anchor-free object-detection methods achieve a significant advancement in field of computer vision, particularly in the realm of real-time inferences. However, in remote sensing object detection, anchor-free methods often lack of capability in separating the foreground and background. This paper proposes an anchor-free method named probability-enhanced anchor-free detector (ProEnDet) for remote sensing object detection. First, a weighted bidirectional feature pyramid is used for feature extraction. Second, we introduce probability enhancement to strengthen the classification of the object’s foreground and background. The detector uses the logarithm likelihood as the final score to improve the classification of the More >

  • Open Access

    ARTICLE

    Prediction of Uncertainty Estimation and Confidence Calibration Using Fully Convolutional Neural Network

    Karim Gasmi1,*, Lassaad Ben Ammar2,, Hmoud Elshammari4, Fadwa Yahya2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2557-2573, 2023, DOI:10.32604/cmc.2023.033270 - 31 March 2023

    Abstract Convolution neural networks (CNNs) have proven to be effective clinical imaging methods. This study highlighted some of the key issues within these systems. It is difficult to train these systems in a limited clinical image databases, and many publications present strategies including such learning algorithm. Furthermore, these patterns are known for making a highly reliable prognosis. In addition, normalization of volume and losses of dice have been used effectively to accelerate and stabilize the training. Furthermore, these systems are improperly regulated, resulting in more confident ratings for correct and incorrect classification, which are inaccurate and… More >

  • Open Access

    ARTICLE

    A Deep Learning Approach for Crowd Counting in Highly Congested Scene

    Akbar Khan1, Kushsairy Abdul Kadir1,*, Jawad Ali Shah2, Waleed Albattah3, Muhammad Saeed4, Haidawati Nasir5, Megat Norulazmi Megat Mohamed Noor5, Muhammad Haris Kaka Khel1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5825-5844, 2022, DOI:10.32604/cmc.2022.027077 - 28 July 2022

    Abstract With the rapid progress of deep convolutional neural networks, several applications of crowd counting have been proposed and explored in the literature. In congested scene monitoring, a variety of crowd density estimating approaches has been developed. The understanding of highly congested scenes for crowd counting during Muslim gatherings of Hajj and Umrah is a challenging task, as a large number of individuals stand nearby and, it is hard for detection techniques to recognize them, as the crowd can vary from low density to high density. To deal with such highly congested scenes, we have proposed… More >

  • Open Access

    ARTICLE

    Intelligent Detection Model Based on a Fully Convolutional Neural Network for Pavement Cracks

    Duo Ma1, 2, 3, Hongyuan Fang1, 2, 3, *, Binghan Xue1, 2, 3, Fuming Wang1, 2, 3, Mohammed A. Msekh4, Chiu Ling Chan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1267-1291, 2020, DOI:10.32604/cmes.2020.09122 - 28 May 2020

    Abstract The crack is a common pavement failure problem. A lack of periodic maintenance will result in extending the cracks and damage the pavement, which will affect the normal use of the road. Therefore, it is significant to establish an efficient intelligent identification model for pavement cracks. The neural network is a method of simulating animal nervous systems using gradient descent to predict results by learning a weight matrix. It has been widely used in geotechnical engineering, computer vision, medicine, and other fields. However, there are three major problems in the application of neural networks to… More >

Displaying 1-10 on page 1 of 4. Per Page