Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Full-Length Transcriptome Analysis of Cultivated and Wild Tetraploid Peanut

    Danlei Song#, Xiaona Yu#, Yaoyao Li, Xianheng Wang, Xinyuan Cui, Tong Si, Xiaoxia Zou, Yuefu Wang, Minglun Wang, Xiaojun Zhang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 439-453, 2023, DOI:10.32604/phyton.2022.023165 - 12 October 2022

    Abstract The high-quality genomes and large-scale full-length cDNA sequences of allotetraploid peanuts have been sequenced and released, which has accelerated the functional genomics and molecular breeding research of peanut. In order to understand the difference in the transcriptional levels of wild and cultivated peanuts. In this study, we integrated of second- and third-generation sequencing technologies to sequence full-length transcriptomes in peanut cv. Pingdu9616 and its putative ancestor Arachis monticola. The RNA extracted from six different tissues (i.e., roots, stems, leaves, flowers, needles and pods) were sampled at 20 days after flowering. A total of 31,764 and 33,981… More >

  • Open Access

    ARTICLE

    Characterization of full-length transcriptome and mechanisms of sugar accumulation in Annona squamosa fruit

    REN FANG#, WEIXIONG HUANG#, JINYAN YAO, XING LONG, JI ZHANG, SHUANGYUN ZHOU, BIAO DENG, WENZHONG TANG, ZHENYU AN*

    BIOCELL, Vol.44, No.4, pp. 737-750, 2020, DOI:10.32604/biocell.2020.012933 - 24 December 2020

    Abstract Annona squamosa is a multipurpose fruit tree employed in nutritional, medicinal, and industrial fields. Its fruit is significantly enriched in sugars, making it an excellent species to study sugar accumulation in fruit. However, the scarcity of genomic resources hinders genetic studies in this species. This study aimed at generating large-scale genomic resources in A. squamosa and deciphering the molecular basis of its high sugar content. Herein, we sequenced and characterized the full-length transcriptome of A. squamosa fruit using PacBio Iso-seq. In addition, we analyzed the changes in sugar content over five fruit growth and ripening stages, and we… More >

Displaying 1-10 on page 1 of 2. Per Page