Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (89)
  • Open Access

    REVIEW

    Oil Palm Fiber Hybrid Composites: A Recent Review

    H. A. Aisyah1,*, E. Hishamuddin1, A. W. Noorshamsiana1, Z. Ibrahim1, R. A. Ilyas2,*

    Journal of Renewable Materials, Vol.12, No.10, pp. 1661-1689, 2024, DOI:10.32604/jrm.2024.055217 - 23 October 2024

    Abstract Composite materials from oil palm fiber enhance sustainability by utilizing renewable resources, reducing dependence on non-renewable materials, and lessening environmental impact. Despite their mechanical and dimensional stability limitations, oil palm fiber-based polymer composites offer significant advantages, such as natural abundance, potential weight reduction, and cost-effectiveness due to local availability and renewability. The growing interest in oil palm hybrid composites, made from blending different fibers, is due to their customizable mechanical and physical properties. Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials. This review investigates More > Graphic Abstract

    Oil Palm Fiber Hybrid Composites: A Recent Review

  • Open Access

    ARTICLE

    Effect of Senescence Retardants on the Quality of Persian Lime Fruits

    Rafael Ariza-Flores1, Rafael Ambriz-Cervantes2, Pedro Cadena-Iñiguez3, Luis A. Gálvez-Marroquín4, Miguel A. Cano-García4,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1805-1818, 2024, DOI:10.32604/phyton.2024.050093 - 30 August 2024

    Abstract The objective of this study consisted of evaluating the effect of the application of chitosan (Q), 1-methylcyclopropene (1-MCP) under two controlled temperatures on some physical, physiological, and chemical parameters contributing to the quality of Persian lime Citrus latifolia fruits. Eight treatments were evaluated, resulting from the combination of four senescence retardant applications (Q, 1-MCP, 1-MCP + Q, and without application) on fruits stored at two temperatures (12/20°C). Epidermis color (luminosity, chromaticity, and hue), fruit appearance, respiration, weight loss, total juice content, total soluble solids, and titratable acidity were registered during the study. The results indicate that More >

  • Open Access

    ARTICLE

    Integrative Analysis of Transcriptome and Phenolic Compounds Profile Provides Insights into the Quality of Soursop (Annona muricata L.) Fruit

    Yolotzin Apatzingán Palomino-Hermosillo1, Ángel Elpidio Díaz-Jasso2, Rosendo Balois-Morales1, Verónica Alhelí Ochoa-Jiménez1,3, Pedro Ulises Bautista-Rosales1, Guillermo Berumen-Varela1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1717-1732, 2024, DOI:10.32604/phyton.2024.052216 - 30 July 2024

    Abstract Soursop (Annona muricata L.) is a tropical fruit highly valued for its unique flavor, nutritional value, and health-promoting properties. The ripening process of soursop involves complex changes in gene expression and metabolite accumulation, which have been studied using various omics technologies. Transcriptome analysis has provided insights into the regulation of key genes involved in ripening, while metabolic compound analysis has revealed the presence of numerous bioactive compounds with potential health benefits. However, the integration of transcriptome and metabolite compound data has not been extensively explored in soursop. Therefore, in this paper, we present a comprehensive analysis… More >

  • Open Access

    ARTICLE

    A Novel Optimization Approach for Energy-Efficient Multiple Workflow Scheduling in Cloud Environment

    Ambika Aggarwal1, Sunil Kumar2,3, Ashok Bhansali4, Deema Mohammed Alsekait5,*, Diaa Salama AbdElminaam6,7,8

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 953-967, 2024, DOI:10.32604/csse.2024.050406 - 17 July 2024

    Abstract Existing multiple workflow scheduling techniques focus on traditional Quality of Service (QoS) parameters such as cost, deadline, and makespan to find optimal solutions by consuming a large amount of electrical energy. Higher energy consumption decreases system efficiency, increases operational cost, and generates more carbon footprint. These major problems can lead to several problems, such as economic strain, environmental degradation, resource depletion, energy dependence, health impacts, etc. In a cloud computing environment, scheduling multiple workflows is critical in developing a strategy for energy optimization, which is an NP-hard problem. This paper proposes a novel, bi-phase Energy-Efficient… More >

  • Open Access

    ARTICLE

    Evaluation of Resistance of Different Kiwifruit Varieties (Lines) to Canker Disease and Brown Spot Disease

    Wenwen Su1,#, Chongpei Zheng3,#, Zhencheng Han2, Chunguang Ren1, Di Wu1, Tao Li1, Yi Yang1, Weijie Li2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1249-1261, 2024, DOI:10.32604/phyton.2024.051935 - 27 June 2024

    Abstract Kiwifruit canker and brown spot are significant diseases affecting kiwis, caused by Pseudomonas syringae pathogenic variations (Pseudomonas syringae pv. Actinidiae (Psa)) and Corynesporapolytica (Corynespora cassiicola). At present, the research on canker disease and brown spot disease mainly focuses on the isolation and identification of pathogenic bacteria, drug control, resistance gene mining and functional verification. Practice has proved that breeding disease resistant varieties are an effective method to control canker disease and brown spot disease. However, most existing cultivars lack genes for canker and brown spot resistance. Wild kiwifruit resources in nature exhibit extensive genetic diversity due to prolonged natural selection,… More >

  • Open Access

    ARTICLE

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

    Susi Susi1,2,*, Makhmudun Ainuri3,*, Wagiman Wagiman3, Mohammad Affan Fajar Falah3

    Journal of Renewable Materials, Vol.12, No.3, pp. 513-537, 2024, DOI:10.32604/jrm.2024.045586 - 11 April 2024

    Abstract Microcrystalline cellulose (MCC) is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity. When implemented in other polymers, high crystallinity correlates with greater strength and stiffnes, but it can reduce the water-holding capacity. The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity, both of which have significance as properties of hydrogel filler. The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid (HCl) and the appropriate hydrolysis… More > Graphic Abstract

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning

    Irfan Haider1, Muhammad Attique Khan1,*, Muhammad Nazir1, Taerang Kim2, Jae-Hyuk Cha2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 529-554, 2024, DOI:10.32604/csse.2023.042080 - 19 March 2024

    Abstract Fruit infections have an impact on both the yield and the quality of the crop. As a result, an automated recognition system for fruit leaf diseases is important. In artificial intelligence (AI) applications, especially in agriculture, deep learning shows promising disease detection and classification results. The recent AI-based techniques have a few challenges for fruit disease recognition, such as low-resolution images, small datasets for learning models, and irrelevant feature extraction. This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization. Three fruit types have been… More >

  • Open Access

    ARTICLE

    Optimizing Household Wastes (Rice, Vegetables, and Fruit) as an Environmentally Friendly Electricity Generator

    Deni Ainur Rokhim1,2, Isma Yanti Vitarisma1, Sumari Sumari1,*, Yudhi Utomo1, Muhammad Roy Asrori1

    Journal of Renewable Materials, Vol.12, No.2, pp. 275-284, 2024, DOI:10.32604/jrm.2023.043419 - 11 March 2024

    Abstract The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources. Consequently, many researchers are seeking alternative energy sources. One potential technology, the Microbial Fuel Cell (MFC) based on rice, vegetable, and fruit wastes, can convert chemical energy into electrical energy. This study aims to determine the potency of rice, vegetable, and fruit waste assisted by Cu/Mg electrodes as a generator of electricity. The method used was a laboratory experiment, including the following steps: electrode preparation, waste sample preparation, incubation of the… More >

  • Open Access

    ARTICLE

    Differential Expression of Genes Related to Fruit Development and Capsaicinoids Synthesis in Habanero Pepper Plants Grown in Contrasting Soil Types

    Eduardo Burgos-Valencia1,#, Federico García-Laynes1,#, Ileana Echevarría-Machado1, Fatima Medina-Lara1, Miriam Monforte-González1, José Narváez-Zapata2,*, Manuel Martínez-Estévez1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 151-183, 2024, DOI:10.32604/phyton.2023.046943 - 27 February 2024

    Abstract Habanero pepper (Capsicum chinense Jacq.) is a crop of economic relevance in the Peninsula of Yucatan. Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world, which gives them industrial importance. Soil is an important factor that affects pepper development, nutritional quality, and capsaicinoid content. However, the effect of soil type on fruit development and capsaicinoid metabolism has been little understood. This work aimed to compare the effect of soils with contrasting characteristics, black soil (BS) and red soil (RS), on the expression of genes related to the… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Classification of Rotten Fruits and Identification of Shelf Life

    S. Sofana Reka1, Ankita Bagelikar2, Prakash Venugopal2,*, V. Ravi2, Harimurugan Devarajan3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 781-794, 2024, DOI:10.32604/cmc.2023.043369 - 30 January 2024

    Abstract The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality, flavor and nutritional value. The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers. The impact of rotten fruits can foster harmful bacteria, molds and other microorganisms that can cause food poisoning and other illnesses to the consumers. The overall purpose of the study is to classify rotten fruits, which can affect the taste, texture, and appearance of other fresh fruits, thereby reducing their shelf life.… More >

Displaying 1-10 on page 1 of 89. Per Page