Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Mitigating the Dynamic Load Altering Attack on Load Frequency Control with Network Parameter Regulation

    Yunhao Yu1, Boda Zhang1, Meiling Dizha1, Ruibin Wen1, Fuhua Luo1, Xiang Guo1, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070577 - 09 December 2025

    Abstract Load frequency control (LFC) is a critical function to balance the power consumption and generation. The grid frequency is a crucial indicator for maintaining balance. However, the widely used information and communication infrastructure for LFC increases the risk of being attacked by malicious actors. The dynamic load altering attack (DLAA) is a typical attack that can destabilize the power system, causing the grid frequency to deviate from its nominal value. Therefore, in this paper, we mathematically analyze the impact of DLAA on the stability of the grid frequency and propose the network parameter regulation (NPR)… More >

  • Open Access

    ARTICLE

    Enhancement of Frequency Regulation in AC-Excited Adjustable-Speed Pumped Storage Units during Pumping Operations

    Shuxin Tan1, Wei Yan2, Lei Zhao1, Xianglin Zhang3,*, Ziqiang Man2, Yu Lu2, Teng Liu2, Gaoyue Zhong2, Weiqun Liu2, Linjun Shi3

    Energy Engineering, Vol.122, No.12, pp. 5175-5197, 2025, DOI:10.32604/ee.2025.068692 - 27 November 2025

    Abstract The integration of large-scale renewable energy introduces frequency instability challenges due to inherent intermittency. While doubly-fed pumped storage units (DFPSUs) offer frequency regulation potential in pumping mode, conventional strategies fail to address hydraulic-mechanical coupling dynamics and operational constraints, limiting their effectiveness. This paper presents an innovative primary frequency control strategy for double-fed pumped storage units (DFPSUs) operating in pumping mode, integrating an adaptive parameter calculation method. This method is constrained by operational speed and power limits, addressing key performance factors. A dynamic model that incorporates the reversible pump-turbine characteristics is developed to translate frequency deviations… More >

  • Open Access

    ARTICLE

    Robust Load Frequency Control in Hybrid Power Systems Using QOSCA-Tuned PID with EV Loads

    Pralay Roy1, Pabitra Kumar Biswas1, Chiranjit Sain2,*, Taha Selim Ustun3,*

    Energy Engineering, Vol.122, No.10, pp. 4035-4060, 2025, DOI:10.32604/ee.2025.068989 - 30 September 2025

    Abstract This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form, Quasi Oppositional Sine Cosine Algorithm, to automatic generation control of a multiple-source-based interconnected power system that consists of thermal, gas, and hydro power plants. The Proportional-Integral-Derivative controller, which is utilized for automated generation control in an interconnected hybrid power system with a DC link connecting two regions, has been tuned using the proposed optimization technique. An Electric Vehicle is taken into consideration only as an electrical load. The Quasi Oppositional Sine Cosine method’s performance and efficacy… More >

  • Open Access

    ARTICLE

    A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System

    Geetanjali Dei1,2, Deepak Kumar Gupta1, Binod Kumar Sahu2, Amitkumar V. Jha3, Bhargav Appasani3,*, Nicu Bizon4,5,*

    Energy Engineering, Vol.122, No.8, pp. 3399-3431, 2025, DOI:10.32604/ee.2025.067357 - 24 July 2025

    Abstract This paper presents an innovative and effective control strategy tailored for a deregulated, diversified energy system involving multiple interconnected area. Each area integrates a unique mix of power generation technologies: Area 1 combines thermal, hydro, and distributed generation; Area 2 utilizes a blend of thermal units, distributed solar technologies (DST), and hydro power; and Third control area hosts geothermal power station alongside thermal power generation unit and hydropower units. The suggested control system employs a multi-layered approach, featuring a blended methodology utilizing the Tilted Integral Derivative controller (TID) and the Fractional-Order Integral method to enhance… More >

  • Open Access

    ARTICLE

    Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids

    Aijia Ding, Tingzhang Liu*

    Energy Engineering, Vol.121, No.12, pp. 3735-3759, 2024, DOI:10.32604/ee.2024.054687 - 22 November 2024

    Abstract The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources. This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative (FOPID) controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration. To improve load frequency control, the proposed controllers are applied to a two-area interconnected microgrid system incorporating diverse energy sources, such as wind turbines, photovoltaic cells, diesel generators, and various storage technologies. A novel meta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers. The efficacy… More >

  • Open Access

    ARTICLE

    Ladder Time Stepwise Inertia Coordinated Control Method of Multiple Wind Farms to Suppress System Frequency Secondary Drop

    He Li1, Xianchao Liu2,*, Jidong Li1, Yuchen Qiu2

    Energy Engineering, Vol.121, No.8, pp. 2293-2311, 2024, DOI:10.32604/ee.2024.048752 - 19 July 2024

    Abstract When employing stepwise inertial control (SIC), wind power generation can offer significant frequency support to the power system, concurrently mitigating energy shortages and suppressing secondary frequency drop. Nonetheless, further investigation is imperative for implementing stepped inertia control due to variations in frequency regulation capabilities and operational safety among diverse wind farm groups. Consequently, this paper advocates a multi-wind farm ladder timing SIC method designed to alleviate secondary drops in system frequency. Initially, the paper introduces the fundamental principles of stepped inertia control for a doubly-fed induction generator (DFIG) and deduces the relationship between support energy,… More >

  • Open Access

    ARTICLE

    Frequency Control Approach and Load Forecasting Assessment for Wind Systems

    K. Sukanya*, P. Vijayakumar

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 971-982, 2023, DOI:10.32604/iasc.2023.028047 - 06 June 2022

    Abstract Frequency deviation has to be controlled in power generation units when there are fluctuations in system frequency. With several renewable energy sources, wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature. Whenever there is a mismatch between generation and demand, the frequency deviation may arise from the actual frequency 50 Hz (in India). To mitigate the frequency deviation issue, it is necessary to develop an effective technique for better frequency control in wind energy systems. In this work, heuristic Fuzzy Logic Based Controller… More >

  • Open Access

    ARTICLE

    Optimal FOPID Controllers for LFC Including Renewables by Bald Eagle Optimizer

    Ahmed M. Agwa1, Mohamed Abdeen2, Shaaban M. Shaaban1,3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5525-5541, 2022, DOI:10.32604/cmc.2022.031580 - 28 July 2022

    Abstract In this study, a bald eagle optimizer (BEO) is used to get optimal parameters of the fractional-order proportional–integral–derivative (FOPID) controller for load frequency control (LFC). Since BEO takes only a very short time in finding the optimal solution, it is selected for designing the FOPID controller that improves the system stability and maintains the frequency within a satisfactory range at different loads. Simulations and demonstrations are carried out using MATLAB-R2020b. The performance of the BEO-FOPID controller is evaluated using a two-zone interlinked power system at different loads and under uncertainty of wind and solar energies.… More >

  • Open Access

    ARTICLE

    Bilateral Contract for Load Frequency and Renewable Energy Sources Using Advanced Controller

    Krishan Arora1, Gyanendra Prasad Joshi2, Mahmoud Ragab3,4,5,*, Muhyaddin Rawa6,7,8, Ahmad H. Milyani6,7, Romany F. Mansour9, Eunmok Yang10

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3165-3180, 2022, DOI:10.32604/cmc.2022.026966 - 16 June 2022

    Abstract Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance. However, the collaboration of various manufacturing agencies, autonomous power manufacturers, and buyers have created complex installation processes. The regular active load and inefficiency of best measures among varied associates is a huge hazard. Any sudden load deviation will give rise to immediate amendment in frequency and tie-line power errors. It is essential to deal with every zone’s frequency and tie-line power within permitted confines followed by fluctuations within the load. Therefore, it can be proficient… More >

  • Open Access

    ARTICLE

    Kalman-Filtering-Based Frequency Control Strategy Considering Electrolytic Aluminum Load

    Yuqin Chen, Shihai Yang*, Yueping Kong, Mingming Chen

    Energy Engineering, Vol.119, No.4, pp. 1517-1529, 2022, DOI:10.32604/ee.2022.019646 - 23 May 2022

    Abstract Traditional thermal power units are continuously replaced by renewable energies, of which fluctuations and intermittence impose pressure on the frequency stability of the power system. Electrolytic aluminum load (EAL) accounts for large amount of the local electric loads in some areas. The participation of EAL in local frequency control has huge application prospects. However, the controller design of EAL is difficult due to the measurement noise of the system frequency and the nonlinear dynamics of the EAL’s electric power consumption. Focusing on this problem, this paper proposes a control strategy for EAL to participate in… More >

Displaying 1-10 on page 1 of 15. Per Page