Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

    Yang Li, Sibo Jiang*, Ruixin Lan

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 255-276, 2024, DOI:10.32604/sdhm.2024.047776 - 15 May 2024

    Abstract Chloride (Cl) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas (LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperature cycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show that the minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. The Cl ion concentration and growth rate increased with the increasing crack More > Graphic Abstract

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

  • Open Access

    ARTICLE

    Repair of Second-Generation Recycled Fine Aggregate of Waste Concrete from Freeze-Thaw Environment by Carbonation Treatment

    Jie Huang*, Rongbin Jiang, Xiaobo Sun, Yingyong Shuai

    Journal of Renewable Materials, Vol.12, No.1, pp. 187-201, 2024, DOI:10.32604/jrm.2023.044232 - 23 January 2024

    Abstract The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction. This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate (SRFA) obtained from recycled fine aggregate concrete (RFAC) subjected to freeze-thaw (FT) cycles. Before and after carbonation, the properties of SRFA were evaluated. Carbonated second-generation recycled fine aggregate (CSRFA) at five substitution rates (0%, 25%, 50%, 75%, 100%) to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete (CSRFAC). The water absorption, porosity and mechanical properties of CSRFAC were More >

  • Open Access

    ARTICLE

    Effect of Freeze-Thaw Cycles on Chloride Transportation in Concrete: Prediction Model and Experiment

    Yongdong Yan*, Youdong Si, Chunhua Lu, Keke Wu

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 225-238, 2023, DOI:10.32604/sdhm.2022.022629 - 25 June 2023

    Abstract This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary and fiber concrete with both theoretical and experimental methods. The proposed theoretical model takes into account the varying damage levels caused by concrete cover depth and freeze-thaw cycles, which are the two primary parameters affecting the expression of the chloride diffusion coefficient. In the experiment, three types of concrete were prepared: ordinary Portland concrete (OPC), polypropylene fiber concrete (PFC), and steel fiber concrete (SFC). These were then immersed in NaCl solution for 120 days after undergoing 10, 25, and… More >

  • Open Access

    ARTICLE

    Influence of Erosion Induced by NaCl on the Mechanical Performances of Alkali-Activated Mineral Admixtures

    Jing Yu1, Jie Ren2, Guangming Shen3, Weixiang Sun2, Hui Wang4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2385-2398, 2023, DOI:10.32604/fdmp.2023.027877 - 16 May 2023

    Abstract In this paper, the influence of NaCl freeze-thaw (F-T) cycles and dry-wet (D-W) alternations on the flexural, compressive and bonding strengths of alkali-activated fly ash (FA) and a blast furnace slag powder (BFS) is investigated. The considered NaCl concentration is 3%. The effect of polypropylene fibers on the mechanical strengths is also examined. Scanning electron microscopy (SEM), thermogravimetry (TG) and X-ray diffraction (XRD) are selected to discern the mechanisms underpinning the NaCl-induced erosion. The obtained results indicate that the best results in terms of material resistance are obtained with admixtures containing 60% BFS and 40%… More >

  • Open Access

    ARTICLE

    Effect of High Temperature Curing on the Frost Resistance of Recycled Aggregate Concrete and the Physical Properties of Second-Generation Recycled Coarse Aggregate under Freeze-Thaw Cycles

    Xintong Chen, Pinghua Zhu*, Xiancui Yan, Lei Yang, Huayu Wang

    Journal of Renewable Materials, Vol.11, No.6, pp. 2953-2967, 2023, DOI:10.32604/jrm.2023.027140 - 27 April 2023

    Abstract With the emphasis on environmental issues, the recycling of waste concrete, even recycled concrete, has become a hot spot in the field of architecture. But the repeated recycling of waste concrete used in harsh environments is still a complex problem. This paper discusses the durability and recyclability of recycled aggregate concrete (RAC) as a prefabricated material in the harsh environment, the effect of high-temperature curing (60°C, 80°C, and 100°C) on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate (RCA2) of RAC after 300 freeze-thaw cycles were studied. The frost… More >

  • Open Access

    ARTICLE

    The Effect of Different Freeze-Thaw Cycles on Mortar Gas Permeability and Pore Structure

    Wei Chen1,*, Ao Xu1, Hejun Zhang1, Mingquan Sheng1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1623-1636, 2023, DOI:10.32604/fdmp.2023.025083 - 30 January 2023

    Abstract Two different freeze-thaw cycles (FTC) are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar. These are the water-freezing/water-thawing (WF-WT) and the air-freezing/air-thawing (AF-AT) cycles. The problem is addressed experimentally through an advanced nuclear magnetic resonance (NMR) technique able to provide meaningful information on the relationships among gas permeability, pore structure, mechanical properties, and the number of cycles. It is shown that the mortar gas permeability increases with the number of FTCs, the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and More >

  • Open Access

    ARTICLE

    Analysis of the Relationship between Mechanical Properties and Pore Structure of MSW Incineration Bottom Ash Fine Aggregate Concrete after Freeze-Thaw Cycles Based on the Gray Theory

    Peng Zhang1, Dongsheng Shi1,*, Ping Han1,2, Wenchao Jiang1,3

    Journal of Renewable Materials, Vol.11, No.2, pp. 669-688, 2023, DOI:10.32604/jrm.2022.022192 - 22 September 2022

    Abstract The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles, and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste (MSW) incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation. In this paper, the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus, compressive strength, and microscopic porosity parameters to speculate on the most important factors affecting their changes. The GM (1,1) model was… More >

  • Open Access

    ARTICLE

    Investigation on Thermal Insulation and Mechanical Strength of Lightweight Aggregate Concrete and Porous Mortar in Cold Regions

    Jianan Wu1, Ke Xue2, Zhaowei Ding3, Lei Lang3, Kang Gu3, Xiaolin Li4, Mingli Zhang5, Desheng Li3,6,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3167-3183, 2022, DOI:10.32604/jrm.2022.020265 - 14 July 2022

    Abstract Thermal insulation is an important indicator to evaluate the construction material in cold region engineering. As we know, adding the industrial waste as lightweight aggregate or creating the pore inside the cement-based composite could make the texture loose, and the thermal insulating capacity of the material would be improved with this texture. Using these methods, the industrial by-product and engineering waste could be cycled in an efficient way. Moreover, after service the fragmented cement composites paste could be used as aggregate in the thermal insulating concrete again. While the porous texture is not favorable for… More > Graphic Abstract

    Investigation on Thermal Insulation and Mechanical Strength of Lightweight Aggregate Concrete and Porous Mortar in Cold Regions

  • Open Access

    ARTICLE

    Influence of Soil Heterogeneity on the Behavior of Frozen Soil Slope under Freeze-Thaw Cycles

    Kang Liu, Yanqiao Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 119-135, 2022, DOI:10.32604/cmes.2022.018134 - 24 January 2022

    Abstract Soil slope stability in seasonally frozen regions is a challenging problem for geotechnical engineers. The freeze-thaw process of soil slope caused by the temperature fluctuation increases the difficulty in predicting the slope stability because the soil property is influenced by the freeze-thaw cycle. In addition, the frozen soil, which has ice crystal, ice lens and experienced freeze-thaw process, could present stronger heterogeneity. Previous research has not investigated the combined effect of soil heterogeneity and freeze-thaw cycle. This paper studies the influence of soil heterogeneity on the stability of frozen soil slope under freeze-thaw cycles. The… More >

  • Open Access

    ARTICLE

    The Influence of Freeze-Thaw Cycles on Unconfined Compressive Strength of Lignin Fiber-Reinforced Loess

    Zhongnan Gao1,2,#, Xiumei Zhong1,2,#, Qian Wang1,2,*, Yongqi Su3, Jun Wang1,2

    Journal of Renewable Materials, Vol.10, No.4, pp. 1063-1080, 2022, DOI:10.32604/jrm.2022.017374 - 02 November 2021

    Abstract In the seasonal permafrost region with loess distribution, the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to. Many studies have shown that the use of fiber materials can improve the engineering performance of soil and its ability to resist freeze-thaw cycles. At the same time, as eco-environmental protection has become the focus, which has been paid more and more attention to, it has become a trend to find new environmentally friendly improved materials that can replace traditional chemical additives. The purpose of this paper uses new environmental-friendly… More >

Displaying 1-10 on page 1 of 12. Per Page