Wei Chen1,*, Ao Xu1, Hejun Zhang1, Mingquan Sheng1, Yue Liang1, Frederic Skoczylas2
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1623-1636, 2023, DOI:10.32604/fdmp.2023.025083
- 30 January 2023
Abstract Two different freeze-thaw cycles (FTC) are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar. These are the water-freezing/water-thawing (WF-WT) and the air-freezing/air-thawing (AF-AT) cycles. The problem is addressed experimentally through an advanced nuclear magnetic resonance (NMR) technique able to provide meaningful information on the relationships among gas permeability, pore structure, mechanical properties, and the number of cycles. It is shown that the mortar gas permeability increases with the number of FTCs, the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and More >