Muzamil Ahmed1,2, Muhammad Ramzan3,4, Hikmat Ullah Khan2, Saqib Iqbal5, Muhammad Attique Khan6, Jung-In Choi7, Yunyoung Nam8,*, Seifedine Kadry9
CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2217-2230, 2021, DOI:10.32604/cmc.2021.018103
- 21 July 2021
Abstract Violence recognition is crucial because of its applications in activities related to security and law enforcement. Existing semi-automated systems have issues such as tedious manual surveillances, which causes human errors and makes these systems less effective. Several approaches have been proposed using trajectory-based, non-object-centric, and deep-learning-based methods. Previous studies have shown that deep learning techniques attain higher accuracy and lower error rates than those of other methods. However, the their performance must be improved. This study explores the state-of-the-art deep learning architecture of convolutional neural networks (CNNs) and inception V4 to detect and recognize violence… More >