Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    An Integrated Optimization Method for CO2 Pre-Injection during Hydraulic Fracturing in Heavy Oil Reservoirs

    Hong Dong1, Xiding Gao2,*, Xinqi Zhang1, Qian Wang1,3, Haipeng Xu1, Binrui Wang2, Chengguo Gao1, Kaiwen Luo2, Hengyi Jiang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 1971-1991, 2024, DOI:10.32604/fdmp.2024.049406 - 23 August 2024

    Abstract CO2 pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs. It reduces the interfacial tension and viscosity of crude oil, enhances its flowability, maintains reservoir pressure, and increases reservoir drainage capacity. Taking the Badaowan Formation as an example, in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated, which can take into account both vertical and horizontal geological variations and mechanical characteristics. A comprehensive analysis of the impact of key construction parameters on Pre-CO2 based fracturing (such as cluster More >

  • Open Access

    ARTICLE

    A Data-Oriented Method to Optimize Hydraulic Fracturing Parameters of Tight Sandstone Reservoirs

    Zhengrong Chen*, Mao Jiang, Chuanzhi Ai, Jianshu Wu, Xin Xie

    Energy Engineering, Vol.121, No.6, pp. 1657-1669, 2024, DOI:10.32604/ee.2024.030222 - 21 May 2024

    Abstract Based on the actual data collected from the tight sandstone development zone, correlation analysis using the Spearman method was conducted to determine the main factors influencing the gas production rate of tight sandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracture propagation and production was completed. Based on data analysis, the hydraulic fracture parameters were optimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influence of geological and engineering factors in the X1 and X2 development zones in the study area differs significantly. Therefore, it is… More >

Displaying 1-10 on page 1 of 2. Per Page